精英家教网 > 高中数学 > 题目详情
如图所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
12
AP=2,D是AP的中点,E,F,G分别为PC,PD,CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD.
(1)求证:AP∥平面EFG;
(2)求二面角G-EF-D的大小.
精英家教网
分析:(1)由题意及图形,抓住折叠前与折叠后之间的连系,利用条件在平面内找到与直线平行的直线用线面平行的判定定理进行证明.
(2)由题意及(1)可以知道利用二面角的概念找到二面角的平面角,然后再三角形中解出二面角的大小.
解答:精英家教网解:由题意画出如下图形:
(1)连接AC,BD交与点O,连接GO,FO,EO,
∵E,F分别为PC,PD的中点,
EF
.
1
2
CD   ,GO
.
1
2
CD
EF
.
GO

∴四边形EFOG是平行四边行,∴EO?平面EFOG,又在△PAC中,
E,O分别为PC,AC的中点∴PA∥EOEO?平面EFOGPA不在平面EFOG
∴PA∥平面EFOG,即PA∥平面EFG;

(2)取AD的中点H,连接GH,则由GH∥CD∥EF知平面EFG即为平面EFGH,
由已知底面ABCD为正方形∴AD⊥DC
又∵PD⊥平面ABCD∴PD⊥CD又PD∩DC=D∴CD⊥平面PAD
又EF∥CD∴EF⊥平面PAD∴EF⊥FD,EF⊥FH∴∠HFD为二面角的平面角
在直角三角形FDH中,由FD=DH=1得∠HFD=45°,故二面角G-EF-D的平面角为45°.
点评:此题重点考查了学生们的空间想象能力,还考查了正方形的特点及折叠前后之间的不变量及线面平行的判定定理,此外还考查了利用二面角平面角的定义在三角形中求解二面角的大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=
3
,曲线段DE上任一点到A、B两点的距离之和都相等.
(1)建立适当的直角坐标系,求曲线段DE的方程;
(2)过C能否作一条直线与曲线段DE相交,且所得弦以C为中点,如果能,求该弦所在的直线的方程;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=2,点M是棱SB的中点,N是OC上的点,且ON:NC=1:3.
(1)求异面直线MN与BC所成的角;
(2)求MN与面SAB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角梯形ABCP中,AP∥BC,AB⊥AP,AB=BC=3,AP=7,CD⊥AP,现将△PCD沿折线CD折成直二面角P-CD-A,设E,F分别是PD,BC的中点.
(Ⅰ)求证:EF∥平面PAB;
(Ⅱ)求直线BE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)如图所示,在直角梯形ABCD中,∠A=90°,∠C=45°,AB=2,AD=1,E是AB中点,F是DC上的点,且EF∥AD,现以EF为折痕将四边形AEFD向上折起,使平面AEFD垂直平面EBCF,连AC,DC,BA,BD,BF,

(1)求证:CB⊥平面DFB;
(2)求二面角B-AC-D的余弦值.

查看答案和解析>>

同步练习册答案