精英家教网 > 高中数学 > 题目详情

已知函数 时,则下列结论正确的是         .

(1),等式恒成立

(2),使得方程有两个不等实数根

(3),若,则一定有

(4),使得函数上有三个零点

 

【答案】

(1)(2)(3)

【解析】

试题分析:由 ,所以(1)正确;对于B,不妨设m= 则|f(x)|= ,即,得到:x=1或-1, 故B正确;对于C,就是求f(x)单调性,由于f(x)为奇函数,只需讨论在(0,+∞)的单调性即可,当x>0时,f(x)=  >0,所以在(0,+∞)单调递增且函数值都为正数,所以函数f(x)在(-∞,0)上单调递增且函数值都为负数,又f(0)=0,故f(x)在R上单调递增,所以任意x1,x2 属于R,若x1≠x2,则一定有f(x1)≠f(x2)正确;D错误,令f(x)-kx=-kx=x()=0,则有一根为x=0,或=0,但是,而k ,所以=0恒不成立,所以选择D

考点:1.函数的单调性、最值;2.函数的奇偶性、周期性;3.函数零点的判定定理.

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年江苏省连云港市东海高级中学高三(上)期中数学试卷(文科)(解析版) 题型:填空题

已知函数时,则下列结论不正确是    
(1)?x∈R,等式f(-x)+f(x)=0恒成立;
(2)?m∈(0,1),使得方程|f(x)|=m有两个不等实数根;
(3)?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2);
(4)?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省无锡市辅仁高级中学高三3月联考数学试卷(解析版) 题型:解答题

已知函数时,则下列结论不正确是    
(1)?x∈R,等式f(-x)+f(x)=0恒成立;
(2)?m∈(0,1),使得方程|f(x)|=m有两个不等实数根;
(3)?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2);
(4)?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南通市高考数学信息试卷(一)(解析版) 题型:解答题

已知函数时,则下列结论不正确是    
(1)?x∈R,等式f(-x)+f(x)=0恒成立;
(2)?m∈(0,1),使得方程|f(x)|=m有两个不等实数根;
(3)?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2);
(4)?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.

查看答案和解析>>

科目:高中数学 来源:2011年广东省广州大学附属中学高考数学一模试卷(文科)(解析版) 题型:选择题

已知函数时,则下列结论不正确的是( )
A.?x∈R,等式f(-x)+f(x)=0恒成立
B.?m∈(0,1),使得方程|f(x)|=m有两个不等实数根
C.?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2
D.?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点

查看答案和解析>>

同步练习册答案