精英家教网 > 高中数学 > 题目详情

如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.

(Ⅰ)求证:BE=DE;

(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且BB1=
2
a
,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)如图,几何体ABCD-B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且BB1=
2
a
,E为CC1的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求证:AC∥面DB1E.

查看答案和解析>>

科目:高中数学 来源:青岛一模 题型:解答题

如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1面ABCD,BB1、CC1、DD1都垂直于面ABCD,且BB1=
2
a
,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2013年山东省青岛市高考数学一模试卷(理科)(解析版) 题型:解答题

如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源:2013年河北省衡水中学高考数学六模试卷(理科)(解析版) 题型:解答题

如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.

查看答案和解析>>

同步练习册答案