精英家教网 > 高中数学 > 题目详情

多向飞碟是奥运会的竞赛项目,它是由跑靶机把碟靶(射击目标)在一定范围内从不同方向飞出,每抛出一个碟靶,都允许运动员射击两次,一运动员在进行多向飞碟射击训练时,每一次射击命中碟靶的概率P与运动员离碟靶的距离s(m)成反比,现有一碟靶抛出后离运动员的距离s(m)与飞行时间t(秒)满足s=15(t+1)(0≤t≤4).若运动员在碟靶飞出0.5秒时进行第一次射击,命中的概率为0.8,若他发现没有命中,则通过迅速调整,在第一次射击后再经过0.5秒进行第二次射击.求他命中此碟靶的概率.

答案:
解析:

由题意可设(k为常数)

依题意,当t=0.5秒时,,k=0.8×15(1+0.5)=18

,当t=1秒时,

此人命中此碟靶的概率:


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

多项飞碟是奥运会的竞赛项目,它是由抛靶机把碟靶(射击的目标)在一定范围内从不同的方向飞出,每抛出一个碟靶,就允许运动员射击两次,一运动员在进行训练时,每一次射击命中碟靶的概率P与运动员离碟靶的距离S(米)成反比,现有一碟靶抛出后S(米)与飞行时间t(秒)满足S=15(t+1)(0≤t≤4).假设运动员在碟靶飞出后0.5秒进行第一次射击,且命中的概率为0.8,如果他发现没有命中,则通过迅速调整,在第一次射击后经过0.5秒进行第二次射击,求他命中此碟靶的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

多向飞碟是奥运会的竞赛项目,它是由抛靶机把碟靶(射击的目标)在一定范围内从不同的方向飞出,每抛出一个碟靶,就允许运动员射击两次,直到击中为止.一运动员在进行训练时,每一次射击命中碟靶的概率P与运动员离碟靶的距离S(米)成反比,现有一碟靶抛出的距离S(米)与飞行时间t(秒)满足S=15(t+1),(0≤t≤4).假设运动员在碟靶飞出后0.5秒进行第一次射击,且命中的概率为0.8,如果他发现没有命中,则通过迅速调整,在第一次射击后经过0.5秒进行第二次射击.
理科:(1)设该运动员命中碟靶的次数为ξ,求ξ的分布列;(2)求Eξ和Dξ.
文科:求该运动员命中碟靶的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

多向飞碟是奥运会的竞赛项目,它是由抛靶机把碟靶(射击的目标)在一定范围内从不同的方向飞出,每抛出一个碟靶,就允许运动员射击两次,直到击中为止.一运动员在进行训练时,每一次射击命中碟靶的概率P与运动员离碟靶的距离S(米)成反比,现有一碟靶抛出的距离S(米)与飞行时间t(秒)满足S=15(t+1),(0≤t≤4).假设运动员在碟靶飞出后0.5秒进行第一次射击,且命中的概率为0.8,如果他发现没有命中,则通过迅速调整,在第一次射击后经过0.5秒进行第二次射击.
理科:(1)设该运动员命中碟靶的次数为ξ,求ξ的分布列;(2)求Eξ和Dξ.
文科:求该运动员命中碟靶的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

多向飞碟是奥运会的竞赛项目,它是由抛靶机把碟靶(射击的目标)在一定范围内从不同的方向飞出,每抛出一个碟靶,就允许运动员射击两次,直到击中为止.一运动员在进行训练时,每一次射击命中碟靶的概率P与运动员离碟靶的距离S(米)成反比,现有一碟靶抛出的距离S(米)与飞行时间t(秒)满足S=15(t+1),(0≤t≤4).假设运动员在碟靶飞出后0.5秒进行第一次射击,且命中的概率为0.8,如果他发现没有命中,则通过迅速调整,在第一次射击后经过0.5秒进行第二次射击.
理科:(1)设该运动员命中碟靶的次数为ξ,求ξ的分布列;(2)求Eξ和Dξ.
文科:求该运动员命中碟靶的概率.

查看答案和解析>>

同步练习册答案