精英家教网 > 高中数学 > 题目详情
三棱锥P-ABC中,AP=AC,PB=2,将此三棱锥沿三条侧棱剪开,其展开图是一个直角梯形p1p2p3A,如图.
(1)求证:PB⊥AC
(2)求PB与面ABC所成角的大小.
(3)(只理科做)求三棱锥P-ABC外接球的面积.
分析:(1)先证明BP⊥平面PAC,观察展开图发现P1B⊥P1A,P2B⊥P2C,故BP⊥PC,BP⊥PA;再证明PB⊥AC,利用线面垂直的定义即可
(2)先求三棱锥的棱长AP,AC,PC,利用展开图,再作出线面角的平面角,即作PO⊥平面ABC,连接BO交AC于D,连接PD,则∠PBO为PB与面ABC所成角,最后在△PAC中计算∠PBO即可
(3)先计算△PAC的外接圆直径,利用平面几何知识即可,再证明BM为球的直径,设△PAC的外接圆圆心为Q,球心为O.连接PQ并延长交球面于M,连BM,OQ,因为BP⊥平面PAC,OQ⊥平面PAC,所以BP∥OQ,从而平面BPM是球的一个大圆,BM为球的直径,最后在△BPM中计算球的直径BM的长,进而求球的表面积
解答:解:(1)证明:由展开图知:P1B⊥P1A,P2B⊥P2C
∴BP⊥PC,BP⊥PA,∴BP⊥平面PAC
∵AC?平面PAC,∴PB⊥AC
(2)设PA=AC=AP3=x,P3C=y
作AE⊥CP3,则E为CP3的中点
∴x2-(
y
2
)
2
=16,且x=y+
y
2
,解得 x=3
2
,y=2
2

即PA=AC=3
2
,PC=2
2

作PO⊥平面ABC,连接BO交AC于D,连接PD
∴∠PBO为PB与面ABC所成角
∵BP⊥平面PAC,易证AC⊥BD,AC⊥PD
在△PAC中,
1
2
×2
2
×4=
1
2
×3
2
×PD
∴PD=
8
3

∴tan∠PBO=
PD
PB
=
4
3

∴∠PBO=arctan
4
3

(3)设△PAC的外接圆圆心为Q,球心为O.连接PQ并延长交球面于M,连BM,OQ
∵BP⊥平面PAC,OQ⊥平面PAC,∴BP∥OQ
∴平面BPM是球的一个大圆
在△BPM中,BP=2,PM=
9
2

∴BM=
22+(
9
2
)
2
=
97
2
,∴球半径R=
97
4

∴球的表面积S=4πR2=
97π
4
点评:本题综合考察了立体几何中的折叠问题,直线与平面所成的角的求法,三棱锥的外接球的半径的求法等知识和技能,解题时要具有较强的空间想象能力,熟练地将空间问题转化为平面问题加以解决
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.
(1)证明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=
π2
,PA=2,AB=AC=4,点D、E、F分别为BC、AB、AC的中点.
(I)求证:EF⊥平面PAD;
(II)求点A到平面PEF的距离;
(III)求二面角E-PF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)当k=
12
时,求直线PA与平面PBC所成角的大小;
(Ⅱ)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.
(1)证明平面PBF⊥平面PAC;
(2)判断AE是否平行于平面PFD,并说明理由;
(3)若PC=AB=2,求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是
6
6
6
6

查看答案和解析>>

同步练习册答案