精英家教网 > 高中数学 > 题目详情
若不等式x2+ax+a>0恒成立,则a的取值范围是(  )
分析:利用二次函数的性质得出△=a2-4a<0,解不等式即可求出答案.
解答:解:∵等式x2+ax+a>0对一切x∈R恒成立
∴△=a2-4a<0
解得0<a<4.
故选B.
点评:求不等式恒成立的参数的取值范围,是经久不衰的话题,也是高考的热点,它可以综合地考查中学数学思想与方法,体现知识的交汇.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、若不等式x2-ax<0的解集是{x|0<x<1},则a=
1

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式x2-ax-b<0的解集为{x|2<x<3},则a+b=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-2x+3<0的解集为A,不等式x2+x-6<0的解集为B.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集为A∩B,求不等式ax2+x+b<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式x2-ax+1>0恒成立的充分条件是0<x<
1
3
,则实数a的取值范围是
(-∞,
10
3
]
(-∞,
10
3
]

查看答案和解析>>

同步练习册答案