精英家教网 > 高中数学 > 题目详情

【题目】为准确把握市场规律,某公司对其所属商品售价进行市场调查和模型分析,发现该商品一年内每件的售价按月近似呈的模型波动(为月份),已知3月份每件售价达到最高90元,直到7月份每件售价变为最低50.则根据模型可知在10月份每件售价约为_____.(结果保留整数)

【答案】84

【解析】

根据题意,可得当时,函数有最大值为90;当时,函数有最小值50,再利用正弦函数的最值,联列方程组,解之可得.根据函数的周期,结合题意得到,最后用函数取最大值时对应的值,可得,从而可以确定的解析式,再求10月份每件售价.

月份达到最高价90元,7月份价格最低为50元,

时,函数有最大值为90;当时,函数有最小值50

,可得

函数的周期

,得

时,函数有最大值,

,即,得

的解析式为:

所以

故答案为: 84

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)讨论函数的单调性

(2)当证明不等式恒成立(其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy上取两个定点A10),A20),再取两个动点N10m),N20n),且mn2.

1)求直线A1N1A2N2交点M的轨迹C的方程;

2)过R30)的直线与轨迹C交于PQ,过PPNx轴且与轨迹C交于另一点NF为轨迹C的右焦点,若λ1),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图所示,记椭圆的左、右顶点分别为,当动点在定直线上运动时,直线分别交椭圆于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求,某医疗器械厂开足马力,日夜生产防疫所需物品.已知该厂有两条不同生产线生产同一种产品各10万件,为保证质量,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如下所示:

该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.

1)从等级为优秀的样本中随机抽取两件,记为来自机器生产的产品数量,写出的分布列,并求的数学期望;

2)请完成下面质量等级与生产线产品列联表,并判断能不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.

生产线的产品

生产线的产品

合计

良好以上

合格

合计

附:

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为(  )

A. 300,B. 300,C. 60,D. 60,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对称轴为坐标轴的椭圆的焦点为上.

(1)求椭圆的方程;

(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,则当的面积为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,为等边三角形,平面是线段上靠近的三等分点.

1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用×+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+2=2,设勾股形中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为(

A.134B.866C.300D.188

查看答案和解析>>

同步练习册答案