精英家教网 > 高中数学 > 题目详情
连续抛掷两枚正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),记所得朝上的面的点数分别为x,y,过坐标原点和点P(x-3,y-3)的直线的倾斜角为θ,则θ>60°的概率为    (规定:P与坐标原点重合时不满足θ>60°的情形).
【答案】分析:首先根据题意列出表格,然后根据表格求得所有等可能的情况,找出过坐标原点和点P(x-3,y-3)的直线的倾斜角为θ,则θ>60°的点,然后利用古典概型的概率公式求解即可求得答案.
解答:解:由题意知本题是一个古典概型,点P的坐标如下表:
x\y123456
1(-2,-2)(-2,-1)(-2,0)(-2,1)(-2,2)(-2,3)
2(-1,-2)(-1,-1)(-1,0)(-1,1)(-1,2)(-1,3)
3(0,-2)(0,-1)(0,0)(0,1)(0,2)(0,3)
4(1,-2)(1,-1)(1,0)(1,1)(1,2)(1,3)
5(2,-2)(2,-1)(2,0)(2,1)(2,2)(2,3)
6(3,-2)(3,-1)(3,0)(3,1)(3,2)(3,3)
由表格易知,共有36种可能情况,
过坐标原点和点P(x-3,y-3)的直线的倾斜角为θ,则θ>60°的点有(-2,1)、(-2,2)、(-2,3)、(-1,-2)、(-1,1)、(-1,2)、(-1,3)、(0,-2)、(0,-1)、(0,1)、(0,2)、(0,3)、(1,-2)、(1,-1)、(1,2)、(1,3)、(2,-2)、(2,-1)、(3,-2)、(3,-1),共有20种情形
故过坐标原点和点P(x-3,y-3)的直线的倾斜角为θ,则θ>60°的概率为=
故答案为:
点评:本题主要考查了列表法求概率的知识以及直线的倾斜角的概念,同时考查了古典概型的概率的计算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

连续抛掷两枚正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),记所得朝上的面的点数分别为x,y,过坐标原点和点P(x-3,y-3)的直线的倾斜角为θ,则θ>60°的概率为
5
9
5
9
(规定:P与坐标原点重合时不满足θ>60°的情形).

查看答案和解析>>

科目:高中数学 来源:湖南省模拟题 题型:解答题

已知向量a=(-2,1),b=(x,y),
(Ⅰ)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=-1的概率;
(Ⅱ)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

连续抛掷两枚正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),记所得朝上的面的点数分别为x,y,过坐标原点和点P(x-3,y-3)的直线的倾斜角为θ,则θ>60°的概率为______(规定:P与坐标原点重合时不满足θ>60°的情形).

查看答案和解析>>

科目:高中数学 来源: 题型:

连续抛掷两枚正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),记所得朝上的面的点数分别为x,y,过坐标原点和点P(x,y)的直线的倾斜角为θ,则θ>60°的概率为  (  ▲  )

A.       B.        C.         D.

查看答案和解析>>

同步练习册答案