精英家教网 > 高中数学 > 题目详情
曲线y=sin x在[0,π]上与x轴所围成的平面图形的面积为
 
分析:根据积分的应用可知所求的面积为
π
0
sinxdx
,然后根据积分公式进行计算即可.
解答:解:∵在[0,π],sinx≥0,
∴y=sin x在[0,π]上与x轴所围成的平面图形的面积S=
π
0
sinxdx
=(-cosx)|
 
π
0
=-cosπ+cos0=1+1=2.
故答案为:2.
点评:本题主要考查积分的几何意义,要求熟练掌握常见函数的积分公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(1)如图,向量
OA
OB
被矩阵M作用后分别变成
OA/
OB/

(Ⅰ)求矩阵M;(Ⅱ)并求y=sin(x+
π
3
)
在M作用后的函数解析式;
(2)已知在直角坐标系x0y内,直线l的参数方程为
x=-2+tcos600
y=tsin600
(t为参数)
.以Ox为极轴建立极坐标系,曲线C的极坐标方程为ρcos(θ-
π
3
)=
1
2
. 若C与L的交点为P,求点P与点A(-2,0)的距离|PA|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=ln(x+2)+
x2
2
+2x+
1
2
在点A处的切线与曲线y=sin(2x+φ),(-
π
2
<φ<
π
2
)
在点B处的切线相同,求φ的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏五校高三下学期期初教学质量调研数学卷(解析版) 题型:解答题

 

A.(几何证明选讲选做题)

如图,已知AB为圆O的直径,BC切圆O于点BAC交圆O于点PE为线段BC的中点.求证:OPPE

B.(矩阵与变换选做题)

已知MN,设曲线y=sinx在矩阵MN对应的变换作用下得到曲线F,求F的方程.

C.(坐标系与参数方程选做题)

在平面直角坐标系xOy中,直线m的参数方程为t为参数);在以O为极点、射线Ox为极轴的极坐标系中,曲线C的极坐标方程为ρsinθ=8cosθ.若直线m与曲线C交于AB两点,求线段AB的长.

D.(不等式选做题)

xy均为正数,且xy,求证:2x≥2y+3.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线y=ln(x+2)+
x2
2
+2x+
1
2
在点A处的切线与曲线y=sin(2x+φ),(-
π
2
<φ<
π
2
)
在点B处的切线相同,求φ的值.

查看答案和解析>>

同步练习册答案