精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=log2(x-3).
(1)求f(51)-f(6)的值;
(2)求f(x)的定义域;
(3)若f(x)≥0,求x的取值范围.

分析 (1)由f(x)=log2(x-3),利用对数的性质和运算法则能求出f(51)-f(6)的值.
(2)由f(x)=log2(x-3),利用对数函数的性质能求出f(x)的定义域.
(3)由f(x)=log2(x-3)≥0,利用对数函数的定义和单调性质能求出x的取值范围.

解答 解:(1)∵f(x)=log2(x-3),
∴f(51)-f(6)=log248-log23=$lo{g}_{2}\frac{48}{3}$=log216=4.
(2)∵f(x)=log2(x-3),
∴x-3>0,解得x>3,
∴f(x)的定义域为{x|x>3}.
(3)∵f(x)=log2(x-3)≥0,
∴$\left\{\begin{array}{l}{x-3>0}\\{x-3≥1}\end{array}\right.$,解得x≥4,
∴x的取值范围是[4,+∞).

点评 本题考查函数值、函数的定义域、不等式的解法,是基础题,解题时要认真审题,注意对数函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若B={-1,3,5},使得f:x→2x+1是A到B的映射,则集合A可能为{-1,1,2}.(只需填写一个)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设Sn为等差数列{an}的前n项和,已知a4=9,a3+a7=22.
(I)求数列{an}的通项公式an
(Ⅱ)求证:$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,既为奇函数又在(0,+∞)内单调递减的是(  )
A.f(x)=x3B.f(x)=${x}^{-\frac{1}{2}}$C.f(x)=-xD.f(x)=x+$\frac{3}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的首项为1,公差为2,则a8的值等于(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\frac{bx}{lnx}$-ax.
(1)若a=0,求f(x)的单调增区间;
(2)当b=1时,若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足:a1=a,${a_{n+1}}=\frac{1}{{2-{a_n}}}$
(1)求a2,a3,a4的值,并猜想出an的表达式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x+5;函数g(x)=ax(a>0且a≠1).
(1)求f(x)的解析式;
(2)若g(2)=9,且g[f(x)]≥k对x∈[-1,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=3x+$\frac{2}{x-2}$(x>2)的最小值是6+2$\sqrt{6}$.

查看答案和解析>>

同步练习册答案