精英家教网 > 高中数学 > 题目详情
5.若B={-1,3,5},使得f:x→2x+1是A到B的映射,则集合A可能为{-1,1,2}.(只需填写一个)

分析 由题意分别取2x+1等于-1,3,5求得x值即可得到满足f:x→2x+1是A到B的映射的一个集合A.

解答 解:由2x+1=-1,得x=-1;
由2x+1=3,得x=1;
由2x+1=5,得x=2.
∴满足f:x→2x+1是A到B的映射的一个集合A可能为{-1,1,2}.
故答案为:{-1,1,2}.

点评 本题考查映射的概念,关键是对映射概念的理解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知曲线C:$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-sinθ)=6.
(I)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值;
(Ⅱ)过点M(-1,0)且与直线l平行的直线l1交C于A,B两点,求点M到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{bn}满足b1=1,b2=3,bn=$\frac{{{b}^{2}}_{n-1}+2}{{b}_{n-2}}$(n≥3),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a<$\frac{1}{2}$,判断并用单调性定义证明函数$f(x)=\frac{ax+1}{x+2}$,在(-2,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对任意的两个实数a,b,定义$min(a,b)=\left\{\begin{array}{l}a,a<b\\ b,a≥b\end{array}\right.$,若f(x)=4-x2,g(x)=3x,则min(f(x),g(x))的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=lnx+$\frac{a}{ex}$,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数f(x)=$\sqrt{x}$-1n(x+a)(a>0)在(1,2)上单减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=|$\frac{{x}^{2}+4x+1}{x}$|-a的图象与x轴恰有四个不同的交点,则实数a的取值范围为(0,2)∪(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log2(x-3).
(1)求f(51)-f(6)的值;
(2)求f(x)的定义域;
(3)若f(x)≥0,求x的取值范围.

查看答案和解析>>

同步练习册答案