精英家教网 > 高中数学 > 题目详情

【题目】已知

1)讨论时,的单调性、极值;

2)求证:在(1)的条件下,

3)是否存在实数a,使的最小值是3,如果存在,求出a的值;若不存在,

请说明理由.

【答案】(1) 单调递减;当时,此时单调递增;

的极小值为

(2) 证明过程见详解;

(3)存在实数,使得当时,有最小值3

【解析】

(1) 先对函数求导,得到∵,利用导数的方法研究函数单调性,进而可求出极值;

(2) 先由(1)求出;再令,用导数方法研究单调性,求出的最大值,进而可证明结论成立;

(3) 先假设存在实数a,使有最小值3,用分类讨论的思想,分别讨论 两种情况,结合导数的方法,即可得出结果.

(1)

时,单调递减;

时,,此时单调递增;

的极小值为

(2) 因为的极小值即上的最小值为1

所以

又∵

时,

上单调递减;

时,

(3) 假设存在实数a,使有最小值3

①当时,由于,则

函数上的增函数,

(舍去)

②当时,则当时,,此时是增函数;

,此时是增函数;

,解得

由①、②知,存在实数,使得当时,有最小值3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,平面平面分别在线段上,且是等腰直角三角形.

1)若,求证:平面

2,是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据相关数据统计,2019年底全国已开通基站13万个,部分省市的政府工作报告将推进通信网络建设列入2020年的重点工作,今年一月份全国共建基站3万个.

1)如果从2月份起,以后的每个月比上一个月多建设2000个,那么,今年底全国共有基站多少万个.(精确到0.1万个)

2)如果计划今年新建基站60万个,到2022年底全国至少需要800万个,并且,今后新建的数量每年比上一年以等比递增,问2021年和2022年至少各建多少万个オ能完成计划?(精确到1万个)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,EA平面ABCDCEAEA2DCFEB的中点.

1)求证:DC平面ABC

2)求证:DF∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图1直角三角形ACB中,,点的中点,,将沿折起,使面,如图2.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,点EF分别为棱BCCC1的中点,过点AEF作平面截正方体的表面所得图形是(

A.三角形B.平行四边形C.等腰梯形D.平面五边形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右焦点分别为轴的正半轴上一点,交椭圆于,且的内切圆半径为1.

1)求椭圆的标准方程;

2)若点为圆上一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了增强学生的环境意识,某中学随机抽取了50名学生举行了一次环保知识竞赛,本次竞赛的成绩(得分均为整数,满分100分)整理,制成下表:

成绩

频数

2

3

14

15

14

4

1)作出被抽查学生成绩的频率分布直方图;

2)若从成绩在中选一名学生,从成绩在中选出2名学生,共3名学生召开座谈会,求组中学生组中学生同时被选中的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,肥料成本投入为元,其它成本投入(如培育管理、施肥等人工费)元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为(单位:元).

(Ⅰ)求的函数关系式;

(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案