精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣2x﹣1.
(1)求f(x)的函数解析式,并用分段函数的形式给出;
(2)作出函数f(x)的简图;
(3)写出函数f(x)的单调区间及最值.

【答案】
(1)解:当x<0时,﹣x>0,

则f(﹣x)=(﹣x)2﹣2(﹣x)﹣1=x2+2x﹣1,

∵f(x)是偶函数,

∴f(x)=f(﹣x)=x2+2x﹣1,

∴f(x)=


(2)解:函数f(x)的简图:


(3)解:单调增区间为[﹣1,0]和[1,+∞),

单调减区间为(﹣∞,﹣1]和[0,1],

当x=1或﹣1时,f(x)有最小值﹣2.


【解析】(1)利用函数的奇偶性求f(x)的函数解析式,并用分段函数的形式给出;(2)结合函数的表达式进行作图;(3)根据函数的表达式写出函数f(x)的单调区间及最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,an+1 =1,记Sn=a12+a22+…+an2 , 若S2n+1﹣Sn 对任意n∈N*恒成立,则正整数m的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,已知.

(1)求证:成等差数列;

(2)若的面积为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 是坐标原点, 分别为其左右焦点, , 是椭圆上一点, 的最大值为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于两点,且

(i)求证: 为定值;

(ii)求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)

已知如下等式:

时,试猜想的值,并用数学归纳法给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下图所示

I请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;

为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?

2的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;设有一个回归方程,变量增加一个单位时,平均增加5个单位;线性回归方程必过在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是(

A.0 B.1 C. 2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=2sinxcosx+2cos2x﹣1

(1)求f(x)的最大值,以及该函数取最大值时x的取值集合;

(2)在△ABC中,a、b、c分别是角A、B、C所对的边长,且求角C.

查看答案和解析>>

同步练习册答案