精英家教网 > 高中数学 > 题目详情
数列{an}中,如果存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),则称ak为{an}的一个峰值.
(Ⅰ)若an=-3n2+11n,则{an}的峰值为______;
(Ⅱ)若an=tlnn-n,且an不存在峰值,则实数 t的取值范围是______.
(Ⅰ)若an=-3n2+11n,可以令f(n)=-3n2+11n,图象开口向下,
可得f(n)=-3n2+11n=-3(n-
11
6
2+
121
12

可以存在n=2,使得a2=-3×4+11×2=10,对于任意的n∈N都有,an≤2,
可得{an}的峰值为10;
(Ⅱ)若an=tlnn-n,a1=-1,a2=tln2-2,a3=tln3-3,ak=tlnk-k
可以令g(x)=tlnx-x,g′(x)=
t
x
-1=
t-x
x
,(x>t)
∵若an=tlnn-n,且an不存在峰值,即不存在先增后减的情况,
即a1≥a2,-1≥tln2-2,解得t≤
1
ln2

还有另外一种情况,后面每一项在t的调节下都相等,an不存在峰值,
即an=an+1,∴tlnn-n=tln(n+1)-(n+1),
解得t=
1
ln(
n+1
n
)
,n≥2,n∈N*
综上可得:{t|t≤
1
ln2
或t=
1
ln(
n+1
n
)
,n≥2,n∈N*},
故答案为:10,{t|t≤
1
ln2
或t=
1
ln(
n+1
n
)
,n≥2,n∈N*};
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,如果存在非零常数T,使得am+T=am对任意正整数m均成立,那么就称{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N*),且x1=1,x2=a(a≤1,a≠0),当数列{xn}周期为3时,则该数列的前2007项的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,如果an+1=
1
2
an+1,(n∈N*)
,且a1=1,则a4等于(  )
A、4
B、
15
8
C、
11
2
D、
9
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科) 在数列{an}中,如果对任意n∈N+都有
an+2-an+1an+1-an
=p(p为非零常数),则称数列{an}为“等差比”数列,p叫数列
{an}的“公差比”.
(1)已知数列{an}满足an}=-3•2n+5(n∈N+),判断该数列是否为等差比数列?
(2)已知数列{bn}(n∈N+)是等差比数列,且b1=2,b2=4公差比p=2,求数列{bn}的通项公式bn
(3)记Sn为(2)中数列{bn}的前n项的和,证明数列{Sn}(n∈N+)也是等差比数列,并求出公差比p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,如果存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),则称ak为{an}的一个峰值.若an=-6n2+22n,且{an}的峰值为ak,则正整数k的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

一般地,在数列{an}中,如果存在非零常数T,使得am+T=am对任意正整数m均成立,那么就称{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),设S2009为其前2009项的和,则当数列{xn}的周期为3时,S2009=
1339+a
1339+a

查看答案和解析>>

同步练习册答案