精英家教网 > 高中数学 > 题目详情
已知点G是圆F:(x+2)2+y2=4上任意一点,R(2,0),线段GR的垂直平分线交直线GF于H.

(1)求点H的轨迹C的方程;

(2)点M(1,0),P、Q是轨迹C上的两点,直线PQ过圆心F(-2,0),且F在线段PQ之间,求△PQM面积的最小值.

解:(1)点H的轨迹C的方程为x2=1.

(2)设P(x1,y1),Q(x2,y2),若PQ⊥x轴,则直线PQ:x=-2代入C的方程得y1=3,y2=-3,

SPQM=SPFM+SQFM=×6×3=9.

若PQ不垂直于x轴,设直线PQ:y=k(x+2).

∵F在P、Q两点之间,∴P、Q在双曲线的左支上,且y1y2<0.

又双曲线的渐近线为y=±x,∴k<-或k>,即|k|>,联立

消去x,整理得(3-k2)y2-12ky+9k2=0.y1y2=,y1+y2=,

∴|y1-y2|==6=6≥6

∴SPQM=|y1-y2|×|FM|=|y1-y2|≥9.

综上可知:△PQM面积的最小值是9.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,点P是x轴上方椭圆E上的一点,且PF1⊥F1F2|PF1|=
3
2
|PF2|=
5
2

(Ⅰ) 求椭圆E的方程和P点的坐标;
(Ⅱ)判断以PF2为直径的圆与以椭圆E的长轴为直径的圆的位置关系;
(Ⅲ)若点G是椭圆C:
x2
m2
+
y2
n2
=1(m>n>0)
上的任意一点,F是椭圆C的一个焦点,探究以GF为直径的圆与以椭圆C的长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E:
x2
24
-
y2
12
=1
的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(Ⅲ)在平面上是否存在定点P,使得对圆C上任意的点G有
|GF|
|GP|
=
1
2
?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆一模)已知椭圆E:
x2
8
+
y2
4
=1的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(Ⅲ)在平面上是否存在一点P,使得
GF
GP
=
1
2
?若存在,求出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知点M在椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为
2
6
3
的正三角形.
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若
QP
=2
PF
,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|•|GK|=3|RF1|•|F1S|的直线GK是否存在?请说明理由.

查看答案和解析>>

同步练习册答案