精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= +a是奇函数
(1)求常数a的值
(2)判断f(x)的单调性并给出证明
(3)求函数f(x)的值域.

【答案】
(1)解:函数f(x)= +a是奇函数,可得f(x)+f(﹣x)=0

+a+ +a=0,解得a=


(2)解:由(1)得f(x)= + 在(﹣∞,0)与(0,+∞)上都是减函数,证明如下

任取x1<x2

f(x1)﹣f(x2)= =

当x1,x2∈(0,+∞)时,2x1﹣1>0,2x2﹣1>0,2x2﹣2x1>0,

所以 ,>0,有f(x1)﹣f(x2)>0;

当x1,x2∈(﹣∞,0)时,2x1﹣1<0,2x2﹣1<0,2x2﹣2x1>0,

所以 >0,有f(x1)﹣f(x2)>0,

综上知,函数f(x)在(﹣∞,0)与(0,+∞)上都是减函数


(3)解:2x→0时,f(x)→﹣ ,2x小于1趋向于1时,f(x)→﹣∞,

2x→+∞时,f(x)→ ,2x大于1趋向于1时,f(x)→+∞,

∴函数f(x)的值域是(﹣∞,﹣ )∪( ,+∞)


【解析】(1)函数f(x)是奇函数,可得方程f(x)+f(﹣x)=0代入函数解析式,由此方程求出a的值;(2)由(1)函数f(x)= + ,由解析式形式知f(x)= + 在(﹣∞,0)与(0,+∞)上都是减函数,由定义证明即可;(3)结合函数的单调性,从而求出函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】济南市开展支教活动,有五名教师被随机的分到A、B、C三个不同的乡镇中学,且每个乡镇中学至少一名教师,
(1)求甲乙两名教师同时分到一个中学的概率;
(2)求A中学分到两名教师的概率;
(3)设随机变量X为这五名教师分到A中学的人数,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是棱CD上的动点,G为C1D1的中点,H为A1G的中点.

(1)当点F与点D重合时,求证:EF⊥AH;
(2)设二面角C1﹣EF﹣C的大小为θ,试确定点F的位置,使得sin θ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛另一个人当裁判,设每周比赛结束时,负的一方在下一局当裁判,假设每局比赛中甲胜乙的概率为,甲胜丙,乙胜丙的概率都是,各局的比赛相互独立,第一局甲当裁判.

(1)求第三局甲当裁判的概率;

(2)记前四次中乙当裁判的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为(0,+∞)的函数f(x)满足:
①x>1时,f(x)<0;
②f( )=1;
③对任意的正实数x,y,都有f(xy)=f(x)+f(y).
(1)求证:f( )=﹣f(x);
(2)求证:f(x)在定义域内为减函数;
(3)求满足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (其中常数a>0,且a≠1).
(1)当a=10时,解关于x的方程f(x)=m(其中常数m>2 );
(2)若函数f(x)在(﹣∞,2]上的最小值是一个与a无关的常数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣1+ ,(a∈R,e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)当a=1时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 分别为棱的中点.

(1)在平面内过点平面于点,并写出作图步骤,但不要求证明.

(2)若侧面侧面,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案