精英家教网 > 高中数学 > 题目详情

数列{an}满足数学公式,并且an(an-1+an+1)=2an+1an-1(n≥2),则a2012=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:利用递推关系式推出﹛﹜为等差数列,然后求出结果.
解答:∵an(an-1+an+1)=2an+1an-1(n≥2),
∴anan-1+an+1an=2an+1an-1,两边同除an+1an-1
+=2,
两边同时除以an,得到=+
所以﹛}为等差数列,
a1=1,a2=,故an=
所以a2012==
故选C.
点评:本题考查数列的递推关系式的应用,判断数列是等差数列是解题的关键,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足:Sn=
an24
+n
,an>0.
(1)求{an}的表达式;
(2)将数列{an}依次按1项,2项,3项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7),(a8,a9),(a10,a11,a12),
…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b2010的值;
(3)如果将数列{an}依次按1项,2项,3项,…,m(m≥3)项循环;分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R,x≠
1
a
)
满足ax-f(x)=2bx+f(x),a≠0,f(1)=1;且使f(x)=2x成立的实数x只有一个.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若数列an满足a1=
2
3
an+1=f(an)
bn=
1
an
-1,n∈N+
,证明数列bn是等比数列,并求出bn的通项公式;
(Ⅲ)在(Ⅱ)的条件下,证明:a1b1+a2b2+…+anbn<1,n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海一模)观察数列:
①1,-1,1,-1,…;
②正整数依次被4除所得余数构成的数列1,2,3,0,1,2,3,0,…;
③an=tan
3
,n=1,2,3,…
(1)对以上这些数列所共有的周期特征,请你类比周期函数的定义,为这类数列下一个周期数列的定义:对于数列{an},如果
存在正整数T
存在正整数T
,对于一切正整数n都满足
an+T=an
an+T=an
成立,则称数列{an}是以T为周期的周期数列;
(2)若数列{an}满足an+2=an+1-an,n∈N*,Sn为{an}的前n项和,且S2=2008,S3=2010,证明{an}为周期数列,并求S2008
(3)若数列{an}的首项a1=p,p∈[0,
1
2
),且an+1=2an(1-an),n∈N*,判断数列{an}是否为周期数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex+1,g(x)=(e-1)x+2(e是自然对数的底数).
(1)判断函数H(x)=f(x)-g(x)零点的个数,并说明理由;
(2)设数列{an}满足:a1∈(0,1),且f(an)=g(an+1),n∈N*
①求证:0<an<1;
②比较an与(e-1)an+1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
ax+b
(a,b为常数,a≠0),若f(1)=
1
3
,且f(x)=x只有一个实数根.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若数列{an}满足关系式:an=f(an-1)(n∈N且n≥2),又a1=-
1
2005
,证明数列{
1
an
}是等差数列并求{an}的通项公式.

查看答案和解析>>

同步练习册答案