精英家教网 > 高中数学 > 题目详情
已知函数f(x)(x∈R,x≠
1
a
)
满足ax-f(x)=2bx+f(x),a≠0,f(1)=1;且使f(x)=2x成立的实数x只有一个.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若数列an满足a1=
2
3
an+1=f(an)
bn=
1
an
-1,n∈N+
,证明数列bn是等比数列,并求出bn的通项公式;
(Ⅲ)在(Ⅱ)的条件下,证明:a1b1+a2b2+…+anbn<1,n∈N+
分析:(Ⅰ)由函数f(x)满足ax-f(x)=2bx+f(x),易得f(x)=
2bx
ax-1
;又由f(1)=1,且f(x)=2x只有一解,可得a、b的值;从而得f(x)的表达式.
(Ⅱ)由an+1=f(an),可得an+1=
2an
an+1
,整理得,数列{
1
an+1
-1}是等比数列;且通项公式an=
2n
2n+1
,从而得bn的通项公式.
(Ⅲ)由an、bn的通项公式,易得anbn的表达式为:
1
2n+1
,即得a1b1+a2b2+…+anbn=
1
21+1
+
1
22+1
+…+
1
2n+1
,通过放缩即可证得.
解答:解:(Ⅰ)由ax-f(x)=2bx+f(x),(其中x≠
1
a
,a≠0),得f(x)=
2bx
ax-1

由f(1)=1,得a=2b+1①;
又f(x)=2x只有一解,即
2bx
ax-1
=2x,也就是2ax2-2(1+b)x=0(其中a≠0)只有一解,
∴4(1+b)2-4×2a×0=0,∴b=-1;
代入①,得a=-1;故f(x)=
2x
x+1

(Ⅱ)∵a1=
2
3
,an+1=f(an),∴an+1=
2an
an+1
,即
1
an+1
=
an+1
2an
;∴
1
an+1
-1=
1
2
(
1
an
-1)

∴数列{
1
an+1
-1}是以
1
a1
-1=
1
2
为首项,
1
2
为公比的等比数列;∴an=
2n
2n+1

∵bn=
1
an
-1=
2n +1
2n
-1=
1
2n
(n∈N*),∴
bn+1
bn
=
1
2
(n∈N*);
∴{bn}是首项为
1
2
,公比为
1
2
的等比数列,其通项公式为:bn=
1
2n

(Ⅲ)∵anbn=an
1
an
-1)=1-an=1-
2n
2n+1
=
1
2n+1

∴a1b1+a2b2+…+anbn=
1
21+1
+
1
22+1
+…+
1
2n+1
1
21
+
1
22
+…+
1
2n
=
1
2
(1-
1
2n
)
1-
1
2
=1-
1
2n
<1(n∈N*),即证.
点评:本题考查了数列与函数、方程,以及数列与不等式的综合应用问题,解题时应认真分析,细心解答,以免出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案