精英家教网 > 高中数学 > 题目详情
设集合A={(x,y)|y=ax+b},B={(x,y)|y=3x2+15},C={(x,y)|x2+y2≤144},问:是否存在实数a,b使得A∩B≠∅和(a,b)∈C同时成立.
分析:由集合A和B交集不为空集,可联立两集合中的两函数解析式,消去y得到关于x的一元二次方程,此方程有解,得到根据的判别式大于等于0,列出关于a与b的不等式,记作①,又(a,b)属于集合C,把(a,b)代入集合C中的不等式得到关于a与b的不等式,记作②,由不等式的性质得到(b-6)2≤0,进而得到b=6,把b的值代入①和②可求出a的值,进而求出A∩B≠φ 和(a,b)∈C同时成立时a与b的值.
解答:解:
y=ax+b
y=3x2+15

消去y得:3x2-ax-b+15=0,
若A∩B≠φ,则由△≥0得:a2≥12(15-b),①
若(a,b)∈C,则a2+b2≤144,
∴a2≤144-b2,②
由144-b2≥12(15-b),即(b-6)2≤0,
∴b=6,
代入①,②得108≤a2≤108,
∴a2=108,∴a=±6
3

∴当a=±6
3
且b=6时,A∩B≠φ 和(a,b)∈C同时成立.
点评:此题考查了二次函数与一元二次方程的关系,元素与集合的关系,以及交集、空集的意义,解题时注意运用完全平方式为非负数,以及不等式的基本性质来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x-y),则在映射f下B中的元素(1,1)对应的A中元素为(  )
A、(1,3)
B、(1,1)
C、(
3
5
1
5
)
D、(
1
2
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x-y),则在映射f下B中的元素(1,1)对应的A中元素为
3
5
1
5
3
5
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+y,x-y)在映射下,B中的元素为(4,2)对应的A中元素为(  )

查看答案和解析>>

科目:高中数学 来源:2013-2014学年吉林省延边州汪清六中高三(上)9月月考数学试卷(解析版) 题型:选择题

设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x-y),则在映射f下B中的元素(1,1)对应的A中元素为( )
A.(1,3)
B.(1,1)
C.
D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年吉林省延边州汪清六中高三(上)第一次月考数学试卷(文科)(解析版) 题型:选择题

设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x-y),则在映射f下B中的元素(1,1)对应的A中元素为( )
A.(1,3)
B.(1,1)
C.
D.

查看答案和解析>>

同步练习册答案