【题目】已知
,
.
(1)求曲线
在点
处的切线方程;
(2)当
时,若关于
的方程
存在两个正实数根
,证明:
且
.
【答案】(1)
;(2)见解析
【解析】
(1)求出函数的导函数,再计算出
,
,即可求出切线方程;
(2)由
存在两个正实数根
,整理得方程
存在两个正实数根
.令
利用导数研究其单调性、最值,因为
有两个零点,即
,得
.
因为实数
,
是
的两个根,所以
,从而
.令
,
,则
,变形整理得
.要证
,则只需证
,即只要证
,
再构造函数即可证明.
(1)解:∵
,
∴
,
,
∴曲线
在点
处的切线方程为
.
(2)证明:由
存在两个正实数根
,
整理得方程
存在两个正实数根
.
由
,知
,
令
,则
,
当
时,
,
在
上单调递增;
当
时,
,
在
上单调递减.
所以
.
因为
有两个零点,即
,得
.
因为实数
,
是
的两个根,
所以
,从而
.
令
,
,则
,变形整理得
.
要证
,则只需证
,即只要证
,
结合对数函数
的图象可知,只需要证
,
两点连线的斜率要比
,
两点连线的斜率小即可.
因为
,所以只要证
,整理得
.
令
,则
,
所以
在
上单调递减,即
,
所以
成立,故
成立.
科目:高中数学 来源: 题型:
【题目】汽车尾气中含有一氧化碳(
),碳氢化合物(
)等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:
不了解 | 了解 | 总计 | |
女性 |
|
| 50 |
男性 | 15 | 35 | 50 |
总计 |
|
| 100 |
![]()
(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为
,问是否有
的把握认为“对机动车强制报废标准是否了解与性别有关”?
(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中
浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中
浓度
与使用年限
线性相关,试确定
关于
的回归方程,并预测该型号的汽车使用12年排放尾气中的
浓度是使用4年的多少倍.
附:
(
)
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:用最小二乘法求线性回归方程系数公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了
个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过
(分钟),则称这个工人为优秀员工.
![]()
(1)求这个样本数据的中位数和众数;
(2)以这
个样本数据中优秀员工的频率作为概率,任意调查
名工人,求被调查的
名工人中优秀员工的数量
分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝时期的数学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异。”意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线
,直线
为曲线
在点
处的切线.如图所示,阴影部分为曲线
、直线
以及
轴所围成的平面图形,记该平面图形绕
轴旋转一周所得的几何体为
.给出以下四个几何体:
![]()
![]()
① ② ③ ④
图①是底面直径和高均为
的圆锥;
图②是将底面直径和高均为
的圆柱挖掉一个与圆柱同底等高的倒置圆锥得到的几何体;
图③是底面边长和高均为
的正四棱锥;
图④是将上底面直径为
,下底面直径为
,高为
的圆台挖掉一个底面直径为
,高为
的倒置圆锥得到的几何体.
根据祖暅原理,以上四个几何体中与
的体积相等的是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在古装电视剧《知否》中,甲乙两人进行一种投壶比赛,比赛投中得分情况分“有初”“贯耳”“散射”“双耳”“依竿”五种,其中“有初”算“两筹”,“贯耳”算“四筹”,“散射”算“五筹”,“双耳”算“六筹”,“依竿”算“十筹”,三场比赛得筹数最多者获胜.假设甲投中“有初”的概率为
,投中“贯耳”的概率为
,投中“散射”的概率为
,投中“双耳”的概率为
,投中“依竿”的概率为
,乙的投掷水平与甲相同,且甲乙投掷相互独立.比赛第一场,两人平局;第二场,甲投了个“贯耳”,乙投了个“双耳”,则三场比赛结束时,甲获胜的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,底面ABCD是边长为2的菱形,
,
平面ABCD,
,
,BE与平面ABCD所成的角为
.
![]()
(1)求证:平面
平面BDE;
(2)求二面角B-EF-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其图象关于直线
对称,为了得到函数
的图象,只需将函数
的图象上的所有点( )
A.先向左平移
个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变
B.先向右平移
个单位长度,再把所得各点横坐标缩短为原来的
,纵坐标保持不变
C.先向右平移
个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变
D.先向左平移
个单位长度,再把所得各点横坐标缩短为原来的
,纵坐标保持不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱
的各条棱长均相等,
为
的中点,
分别是线段
和线段
上的动点(含端点),且满足
.当
运动时,下列结论中不正确的是( )
![]()
A. 平面
平面
B. 三棱锥
的体积为定值
C.
可能为直角三角形 D. 平面
与平面
所成的锐二面角范围为![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com