| A. | (-∞,-2$\sqrt{3}$] | B. | [2,+∞) | C. | (-∞,-2$\sqrt{3}$]∪[2$\sqrt{3}$,+∞) | D. | (-∞,-2$\sqrt{3}$)∪(2$\sqrt{3}$,+∞) |
分析 依题意,可得m∈[1,4],x2+mx+4>4m+4x恒成立?(x-4)m+x2-4x+4>0恒成立,构造函数g(m)=(x-4)m+x2-4x+4,则$\left\{\begin{array}{l}{g(1)>0}\\{g(4)>0}\end{array}\right.$,解之即可得到实数x的取值范围.
解答 解:∵t∈[2,16],
∴f(t)=log2t∈[1,4],即m∈[1,4]时,x2+mx+4>4m+4x恒成立,即m∈[1,4],(x-4)m+x2-4x+4>0恒成立,
令g(m)=(x-4)m+x2-4x+4,
则$\left\{\begin{array}{l}{g(1)>0}\\{g(4)>0}\end{array}\right.$,即$\left\{\begin{array}{l}{{x}^{2}-3x>0}\\{{x}^{2}-12>0}\end{array}\right.$,解得:x>2$\sqrt{3}$或x<-2$\sqrt{3}$,
故选:D.
点评 本题考查函数恒成立问题,分离参数m并构造函数g(m)=(x-4)m+x2-4x+4是关键,考查等价转化思想与函数方程思想,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 39 | B. | 45 | C. | 50 | D. | 55 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{99}{100}$ | B. | $\frac{99}{100}$ | C. | -$\frac{100}{99}$ | D. | $\frac{100}{99}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | B. | $\frac{x^2}{25}+\frac{y^2}{21}=1$ | C. | $\frac{x^2}{25}+\frac{y^2}{4}=1$ | D. | $\frac{y^2}{25}+\frac{x^2}{21}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1] | B. | [-1,1] | C. | (-∞,1] | D. | [-1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com