【题目】设{an}是等比数列,下列结论中正确的是( )
A.若a1+a2>0,则a2+a3>0
B.若a1+a3<0,则a1+a2<0
C.若0<a1<a2 , 则2a2<a1+a3
D.若a1<0,则(a2﹣a1)(a2﹣a3)>0
【答案】C
【解析】解:设等比数列{an}的公比为q.
A.∵a1+a2>0,∴a1(1+q)>0,则当q<﹣1时,a2+a3=a1q(1+q)<0,因此不正确;
B.∵a1+a3<0,∴a1(1+q2)<0,∴a1<0.则a1+a2=a1(1+q)可能大于等于0或小于0,因此不正确;
C.∵0<a1<a2 , ∴0<a1<a1q,∴a1>0,q>1.则2a2﹣(a1+a3)=﹣a1(1﹣q)2<0,因此正确;
D.∵a1<0,则(a2﹣a1)(a2﹣a3)= q(1﹣q)2可能相应等于0或大于0,因此不正确.
故选:C.
【考点精析】本题主要考查了等比数列的通项公式(及其变式)的相关知识点,需要掌握通项公式:才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.
(1)求图中a的值,并估计日需求量的众数;
(2)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.
(ⅰ)将S表示为x的函数;
(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的方程是 =1(a>b>0),其右焦点F到椭圆C的其中三个顶点的距离按一定顺序构成以 为公差的等差数列,且该数列的三项之和等于6.
(1)求椭圆C的方程;
(2)若直线AB与椭圆C交于点A,B(A在第一象限),满足2 ,当△0AB面积最大时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,且a=2,2cos2 +sinA= .
(1)若满足条件的△ABC有且只有一个,求b的取值范围;
(2)当△ABC的周长取最大值时,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}中a1=3,其前n项和Sn满足Sn=pan+1﹣ (p为非零实数)
(1)求p值及数列{an}的通项公式;
(2)设{bn}是公差为3的等差数列,b1=1.现将数列{an}中的ab1 , ab2 , …abn…抽去,余下项按原有顺序组成一新数列{cn},试求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的三个内角分别为A,B,C.向量 共线. (Ⅰ)求角C的大小;
(Ⅱ)设角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex[x2+(a+1)x+2a﹣1].
(1)当a=﹣1时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤ea在[a,+∞)上有解,求实数a的取值范围;
(3)若曲线y=f(x)存在两条互相垂直的切线,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2lnx+ ﹣mx(m∈R).
(Ⅰ)当m=﹣1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在(0,+∞)上为单调递减,求m的取值范围;
(Ⅲ)设0<a<b,求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com