【题目】如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1—ABCE,其中平面D1AE⊥平面ABCE.
![]()
(1)证明:BE⊥平面D1AE;
(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出
的值;若不存在,请说明理由.
【答案】(1)证明见解析(2)线段AB上存在满足题意的点M,且
=![]()
【解析】
(1)先计算得BE⊥AE,再根据面面垂直性质定理得结果,(2)先分析确定点M位置,再取D1E的中点L,根据平几知识得AMFL为平行四边形,最后根据线面平行判定定理得结果.
(1)证明连接BE,
![]()
∵ABCD为矩形且AD=DE=EC=BC=2,
∴∠AEB=90°,即BE⊥AE,
又平面D1AE⊥平面ABCE,
平面D1AE∩平面ABCE=AE,BE平面ABCE,
∴BE⊥平面D1AE.
(2)解AM=
AB,取D1E的中点L,连接AL,FL,
![]()
∵FL∥EC,EC∥AB,∴FL∥AB且FL=
AB,
∴FL∥AM,FL=AM
∴AMFL为平行四边形,∴MF∥AL,
因为MF不在平面AD1E上, AL平面AD1E,所以MF∥平面AD1E.
故线段AB上存在满足题意的点M,且
=
.
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的
平面内,若函数
的图象与
轴围成一个封闭的区域
,将区域
沿
轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域
的面积相等,则此圆柱的体积为__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
实数,函数
,函数
.
(Ⅰ)令
,当
时,试讨论函数
在其定义域内的单调性;
(Ⅱ)当
时,令
,是否存在实数
,使得对于函数
定义域中的任意实数
,均存在实数
,有
成立?若存在,求出实数
的取值集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=60°,PD⊥底面ABCD,PD=DC=2,E,F,G分别是AB,PB,CD的中点.
![]()
(1)求证:AC⊥PB;
(2)求证:GF∥平面PAD;
(3)求点G到平面PAB的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点
,
的距离之比为定值
的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系
中,
,
,点
满足
.设点
的轨迹为
,下列结论正确的是( )
A.
的方程为![]()
B.在
上存在点
,使得![]()
C.当
,
,
三点不共线时,射线
是
的平分线
D.在三棱锥中
,
面
,且
,
,
,该三棱锥体积最大值为12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆
与
轴交于
、
两点,
为圆上一点.椭圆
以
、
为焦点且过点
.
(Ⅰ)当
点坐标为
时,求
的值及椭圆方程;
(Ⅱ)若直线
与(Ⅰ)中所求的椭圆交于
、
不同的两点,且点
,
,求直线
在
轴上截距
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线 y = x3 + x-2 在点 P0 处的切线
平行于直线
4x-y-1=0,且点 P0 在第三象限,
⑴求P0的坐标;
⑵若直线
, 且 l 也过切点P0 ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P为椭圆C:
1(a>b>0)上一点,F1,F2分别是椭圆C的左、右两个焦点,|PF1|=2|PF2|,且cos∠F1PF2
,过点F2且斜率为k的直线l与椭圆C交于A,B两点.
(1)求椭圆C的离心率;
(2)若点M(1,
)在C上,求△MAB面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com