科目:高中数学 来源:2014届浙江省温州八校高三9月期初联考理科数学试卷(解析版) 题型:解答题
设函数
的定义域为(0,
).
(Ⅰ)求函数
在
上的最小值;
(Ⅱ)设函数
,如果
,且
,证明:
.
查看答案和解析>>
科目:高中数学 来源:2015届浙江省绍兴市高一上学期阶段性考试数学试卷(解析版) 题型:解答题
已知函数
有如下性质:如果常数
,那么该函数在
上是减函数,在
上是增函数.
(1)如果函数
在
上是减函数,在
上是增函数,求
的值;
(2)证明:函数
(常数
)在
上是减函数;
(3)设常数
,求函数
的最小值和最大值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖北省高三高考模拟理科数学试卷三 题型:解答题
设函数
,其中
.(Ⅰ)若
,求
在
上的最小值;
(Ⅱ)如果
在定义域内既有极大值又有极小值,求实数
的取值范围;
(Ⅲ)是否存在最小的正整数
,使得当
时,不等式
恒成立.
查看答案和解析>>
科目:高中数学 来源:2012届福建省三明市高三第一学期测试理科数学试卷 题型:解答题
设函数
,其中
.(Ⅰ)若
,求
在
上的最小值;
(Ⅱ)如果
在定义域内既有极大值又有极小值,求实数
的取值范围;
(Ⅲ)是否存在最小的正整数
,使得当
时,不等式
恒成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com