精英家教网 > 高中数学 > 题目详情
1.已知数列{an}的前n项和为Sn,Sn=2an+n-3,n∈N*
(1)证明数列{an-1}为等比数列,并求{an}的通项公式;
(2)求数列{nan}的前n项和Tn

分析 (1)由Sn=2an+n-3,n∈N*,得Sn-1=2an-1+n-1-3,两式相减,得an=2an-1-1,由此能证明数列{an-1}是以1为首项,以2为公比的等比数列.并能求出{an}的通项公式.
(2)由nan=n•2n-1+n,利用分组求和法和错位相减法能求出数列{nan}的前n项和.

解答 证明:(1)∵数列{an}的前n项和为Sn,Sn=2an+n-3,n∈N*,①
a1=S1=2a1+1-3,解得a1=2,
∴当n≥2时,Sn-1=2an-1+n-1-3,②
①-②,得an=2an-1-1,
∴an-1=2(an-1-1),
又a1-1=1,
∴数列{an-1}是以1为首项,以2为公比的等比数列.
∴${a}_{n}-1=1×{2}^{n-1}$,
∴${a}_{n}={2}^{n-1}+1$.
解:(2)∵nan=n•2n-1+n,
∴数列{nan}的前n项和:
Tn=1×20+2×2+3×22+…+n×2n-1+(1+2+3+…+n)
=1×20+2×2+3×22+…+n×2n-1+$\frac{n(n+1)}{2}$,③
2Tn=1×2+2×22+3×23+…+n×2n+n(n+1),④
①-②,得:-Tn=1+2+22+23+…+2n-n•2n-$\frac{n(n+1)}{2}$
=$\frac{1-{2}^{n}}{1-2}-n•{2}^{n}-\frac{n(n+1)}{2}$
=$(1-n)×{2}^{n}-1-\frac{n(n+1)}{2}$,
∴Tn=(n-1)×2n+1+$\frac{n(n+1)}{2}$.

点评 本题考查等比数列的证明,考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意分组求和法和错位相减法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知f(sinx)=sin($\frac{π}{2}$+2x),则f($\frac{1}{4}$)=(  )
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}y≥x\\ x+2y≤2\\ x≥-2\end{array}\right.$,则z=2x-y的最小值为(  )
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-ax+a.设p:方程f(x)=0有实数根;q:函数f(x)在区间[1,2]上是增函数.若p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知sinθ-cosθ=$-\frac{1}{5}$,且-π<θ<0,则tanθ的值为(  )
A.±$\frac{3}{4}$B.$\frac{3}{4}$或$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式ax2+2ax+4>0的解集为R,则a的取值范围是[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知O为△ABC内一点,满足$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow 0$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=2,且$∠BAC=\frac{π}{3}$,则△OBC的面积为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,a2=4,a4=2,则a8=(  )
A.-1B.-2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,a、b、c为角A、B、C的对边,且A、B、C成等差数列,则$\frac{{{a^2}+{c^2}-{b^2}}}{ac}$=1.

查看答案和解析>>

同步练习册答案