精英家教网 > 高中数学 > 题目详情
19.双曲线与椭圆有共同的焦点F1(-5,0),F2(5,0),点P(4,3)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.

分析 先利用双曲线与椭圆有共同的焦点F1(-5,0),F2(5,0),设出对应的双曲线和椭圆方程,再利用点P(4,3)适合双曲线的渐近线和椭圆方程,就可求出双曲线与椭圆的方程.

解答 解:由共同的焦点F1(-5,0),F2(5,0),
可设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{a}^{2}-25}$=1,双曲线方程为$\frac{{x}^{2}}{{b}^{2}}$-$\frac{{y}^{2}}{25-{b}^{2}}$=1,
点P(4,3)在椭圆上,$\frac{16}{{a}^{2}}$+$\frac{9}{{a}^{2}-25}$=1,a2=40,
双曲线的过点P(4,3)的渐近线为y=$\frac{3}{4}$x,
分析有$\frac{25-{b}^{2}}{{b}^{2}}$=$\frac{9}{16}$,计算可得b2=16.
所以椭圆方程为:$\frac{{x}^{2}}{40}$+$\frac{{y}^{2}}{15}$=1;
双曲线方程为:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1.

点评 本题考查双曲线与椭圆的标准方程的求法.在求双曲线与椭圆的标准方程时,一定要先分析焦点所在位置,再设方程,避免出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知定义域为R的函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}满足,a1=2,$({{a_{n+1}}-{a_n}})g({a_n})+f({a_n})=0\;({n∈{N^*}})$
(1)求数列{an}的通项公式;
(2)设bn=3f(an)-g(an+1),求数列{bn}的最值及相应的n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知平面α的一个法向量为$\overrightarrow n=({1,-1,0})$,点A(2,6,3)在平面α内,则点D(-1,6,2)到平面α的距离等于$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合A={1,2}的非空子集个数为(  )
A.4B.2C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{-2x-1,-1≤x<0}\\{-2x+1,0<x≤1}\end{array}\right.$,则f(f(-1))=-1,|f(x)|$<\frac{1}{2}$的解集为(-$\frac{3}{4}$,$\frac{1}{4}$)∪($\frac{1}{4}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的表面积是(  )
A.$(1+\sqrt{2}){m^2}$B.$(1+2\sqrt{2}){m^2}$C.$(2+\sqrt{2}){m^2}$D.$(2+2\sqrt{2}){m^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{x^2}{4}+\frac{y^2}{2}$=1,
(1)若椭圆上存在两点A,B关于直线y=-2x+1对称,求直线AB的方程;
(2)过$P(\sqrt{2},5\sqrt{2})$的直线l交椭圆于M,N两点,求|PM|•|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的一条渐近线方程为y=$\frac{1}{2}$x,则其离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{10}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足(1+3i)z=i-3,则z等于(  )
A.iB.$\frac{4-3i}{5}$C.-iD.$\frac{5}{2}i$

查看答案和解析>>

同步练习册答案