精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex

分析 (1)求函数的导数,利用导数的几何意义即可求a的值及函数f(x)的极值;
(2)构造函数g(x)=ex-x2,求函数的导数,研究是的单调性和极值即可证明当x>0时,x2<ex

解答 解:(1)因为f(x)=ex-ax,
所以f(0)=1,即A(0,1),
由f(x)=ex-ax,得f′(x)=ex-a.
又f′(0)=1-a=-1,得a=2.
所以f(x)=ex-2x,f′(x)=ex-2.
令f′(x)=0,得x=ln2.当x<ln2时,f′(x)<0,f(x)单调递减;
当x>ln2时,f′(x)>0,f(x)单调递增.
所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=eln2-2ln2=2-ln4,f(x)无极大值.
(2)令g(x)=ex-x2,则g′(x)=ex-2x.
由(1)得g′(x)=f(x)≥f(ln2)>0,
故g(x)在R上单调递增,又g(0)=1>0,
因此,当x>0时,g(x)>g(0)>0,
即x2<ex

点评 本题主要考查导数的综合应用,根据导数的几何意义建立方程关系求出a的值是解决本题的关键.利用构造函数,利用导数研究函数的单调性和极值是证明不等式的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(如图)及相应的消耗能量数据表(如表).
健步走步数(千卡)16171819
消耗能量(卡路里)400440480520
(Ⅰ)求小王这8天“健步走”步数的平均数;
(Ⅱ)从步数为16千步,17千步,18千步的几天中任选2天,设小王这2天通过健步走消耗的“能量和”为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,角A,B,C的对边分别为a,b,c,且满足ccosB=(2a+b)cos(π-C).
(1)求角C的大小;
(2)若c=4,△ABC的面积为$\sqrt{3}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$f(x)={log_a}({a{x^2}-x})({0<a<1})$,则该函数的单调减区间为(  )
A.(-∞,0)B.$({-∞,\frac{1}{2a}})$C.$({0,\frac{1}{a}})$D.$({\frac{1}{a},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程为y=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列$1,-\frac{3}{4},\frac{1}{2},-\frac{5}{16},…$的一个通项公式为(  )
A.${(-1)^n}\frac{n+1}{2n}$B.${(-1)^{n+1}}\frac{2n-1}{2n}$C.${(-1)^{n+1}}\frac{n+1}{2^n}$D.${(-1)^{n+1}}\frac{2n-1}{2^n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在年级举行的巴蜀中学“群英杯”辩论赛中,甲、乙、丙、丁4个班级晋级半决赛,现用抽签法将四个班级分成2个小组,则甲乙在同一组的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$tanα=\frac{1}{3}$,则$\frac{{{{cos}^2}α-2{{sin}^2}α}}{{{{cos}^2}α}}$=(  )
A.$\frac{7}{9}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C经过两点A((-1,0)和B(1,2),且圆心在x轴上,
(1)求圆C的方程
(2)试直接写出经过点M(-1,-2),并且与圆C相切的直线l的方程(不用写出过程)

查看答案和解析>>

同步练习册答案