精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为矩形,平面平面. 

(1)证明:平面平面

(2)若为棱的中点,,求四面体的体积.

【答案】(1)见解析;(2)

【解析】分析:(1)由面面垂直的性质定理得到⊥平面,进而得到平面平面,(2)由等体积法求解,

详解:(1)证明:∵四边形是矩形,∴CDBC.

∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BCCD平面ABCD

CD⊥平面PBCCDPB.

PBPDCDPD=DCDPD平面PCDPB⊥平面PCD.

PB平面PAB,∴平面PAB⊥平面PCD.

(2)取BC的中点O,连接OPOE.

平面,∴,∴

,∴

∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BCPO平面PBC

PO⊥平面ABCDAE平面ABCD,∴POAE.∵∠PEA=90O, ∴PEAE.

POPE=PAE⊥平面POE,∴AEOE.

∵∠C=D=90O, ∴∠OEC=∠EAD,

,∴

,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点在椭圆上,且的面积为.

(1)求该椭圆的标准方程;

(2)过该椭圆的左顶点作两条相互垂直的直线分别与椭圆相交于不同于点的两点,证明:动直线恒过轴上一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面几何中,研究三角形内任意一点与三边的关系时,有真命题:边长为的正三角形内任意一点到各边的距离之和是定值。类比上述命题,请写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出证明。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为棱上的任意一点,分别为所在棱的中点.

(1)证明:平面

(2)若平面,当二面角的平面角为时,求棱的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)记函数的极值点为,若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足,且当时,,则方程上所有根的和为______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.

(个)

2

3

4

5

6

(百万元)

2.5

3

4

4.5

6

(1)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程

(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分店时,才能使区平均每个店的年利润最大?

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品

(百台),其总成本为万元(总成本=固定成本+生产成本),并且销售收入满足,假设该产品产销平衡,根据上述统计数据规律求:

)要使工厂有盈利,产品数量应控制在什么范围?

)工厂生产多少台产品时盈利最大?

查看答案和解析>>

同步练习册答案