精英家教网 > 高中数学 > 题目详情
2.已知$\overrightarrow{a}$=(sinx,-cosx),$\overrightarrow{b}$=($\sqrt{3}$cosx,-cosx),f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分别是内角A,B,C的对边,若f(A)=2,b=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,求a的值.

分析 (1)根据平面向量的数量积公式和三角恒等变换化简即可;
(2)根据f(A)=2计算A,根据面积计算c,再利用余弦定理求出a.

解答 解:(1)f(x)=2$\sqrt{3}$sinxcosx+2cos2x=$\sqrt{3}$sin2x+cos2x+1=2sin(2x+$\frac{π}{6}$)+1.
(2)∵f(A)=2sin(2A+$\frac{π}{6}$)+1=2,∴sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
∵A∈(0,π),∴2A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{13π}{6}$),∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,
∴A=$\frac{π}{3}$.
∴S△ABC=$\frac{1}{2}bc$sinA=$\frac{1}{2}×1×c×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
∴c=2,
∴a2=b2+c2-2bccosA=3,
∴a=$\sqrt{3}$.

点评 本题考查了三角函数恒等变换,余弦定理解三角形,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在等差数列{an}中,若a4+a6+a8+a10=80,则a1+a13的值为(  )
A.20B.40C.60D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,若输出的S为1525,则判断框内应填(  )
A.k<4B.k≤4C.k>4D.k≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=sinx(cosx-\sqrt{3}sinx)$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在x∈[0,π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某三棱锥的三视图如图所示,主视图和俯视图为全等的等腰直角三角形,则该棱锥最长的棱长为(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.
(1)求a的值;
(2)如函数g(x)=f(x)-|x+1|,求g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}是公差不为零的等差数列,a1=1,且a1,a2,a4成等比数列.
(1)求数列{an}的通项;
(2)求数列$\left\{{{2^{a_n}}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.
(1)求证:EG∥平面ADF;
(2)设H为线段AF上的点,且AH=$\frac{2}{3}$HF,求直线BH和平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(0<a<b)的实轴长为4,截直线y=x-2所得弦长为20$\sqrt{2}$.求:
(1)双曲线的方程;
(2)渐近线方程.

查看答案和解析>>

同步练习册答案