精英家教网 > 高中数学 > 题目详情
10.设椭圆C1的中心和抛物线C2的顶点均为原点O,C1、C2的焦点均在x轴上,在C1、C2上各取两个点,将其坐标记录于表格中:
(1)求C1、C2的标准方程;
(2)过C2的焦点F作斜率为k的直线l,与C2交于A、B两点,若l与C1交于C、D两点,若$\frac{|AB|}{|CD|}=\frac{5}{3}$,求直线l的方程
x3-24$\sqrt{3}$
y$-2\sqrt{3}$0-4$-\frac{{\sqrt{3}}}{2}$

分析 (1)设椭圆C1的方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$ (a>b>0),抛物线C2的方程为:y2=2px(p≠0),从已知中所给四点的坐标可得:点(-2,0)一定在椭圆上,(4,-4),(3,-2$\sqrt{3}$)点一定在抛物线上,由此即可求解.
(2)设l:x=ty+1(t≠0),联立方程组$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=ty+1}\end{array}\right.$消元得:y2-4ty-4=0,可得|AB|=$\sqrt{1+{t}^{2}}•\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=4(t2+1);联立方程组$\left\{\begin{array}{l}{x=ty+1}\\{3{x}^{2}+4{y}^{2}-12=0}\end{array}\right.$得(3t2+4)y2+6ty-9=0,得|CD|=$\sqrt{1+{t}^{2}}•\frac{12\sqrt{1+{t}^{2}}}{3{t}^{2}+4}=\frac{12\sqrt{1+{t}^{2}}}{3{t}^{2}+4}$;由$\frac{|AB|}{|CD|}=\frac{5}{3}$=$4({t}^{2}+1)×\frac{3{t}^{2}+4}{12({t}^{2}+1)}=\frac{5}{3}$,解得t即可.

解答 解:(1)设椭圆C1的方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$ (a>b>0),
抛物线C2的方程为:y2=2px(p≠0),
从已知中所给四点的坐标可得:点(-2,0)一定在椭圆上,
∴(4,-4),(3,-2$\sqrt{3}$)两点一定在抛物线上,
∴2p=4,即抛物线C2的方程为:y2=4x,
把点(-2,0)($\sqrt{3},-\frac{\sqrt{3}}{2}$),代入椭圆C1的方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$ (a>b>0),
得:a2=4,b2=3,∴椭圆C1的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)∵抛物线C2:y2=4x的焦点F(1,0),设l:x=ty+1(t≠0),
联立方程组$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=ty+1}\end{array}\right.$消元得:y2-4ty-4=0,
∴△=16t2+16>0,|AB|=$\sqrt{1+{t}^{2}}•\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=4(t2+1);
联立方程组$\left\{\begin{array}{l}{x=ty+1}\\{3{x}^{2}+4{y}^{2}-12=0}\end{array}\right.$得(3t2+4)y2+6ty-9=0,
∴△=36t2+36(3t2+4)>0,
|CD|=$\sqrt{1+{t}^{2}}•\frac{12\sqrt{1+{t}^{2}}}{3{t}^{2}+4}=\frac{12\sqrt{1+{t}^{2}}}{3{t}^{2}+4}$;
由$\frac{|AB|}{|CD|}=\frac{5}{3}$=$4({t}^{2}+1)×\frac{3{t}^{2}+4}{12({t}^{2}+1)}=\frac{5}{3}$,解得t=±$\frac{\sqrt{3}}{3}$
故直线l的方程为:y=$\sqrt{3}x-\sqrt{3}$或y=$-\sqrt{3}x+\sqrt{3}$.

点评 本题考查椭圆方程的求法和直线方程的求法,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知方程(m-3)x2+(5-m)y2=(m-3)(5-m),其中m∈R,对m的不同取值,该方程不可能表示的曲线是(  )
A.直线B.C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题P:“?x>0,ex>x+1”,则¬P为(  )
A.?x≤0,ex≤x+1B.?x≤0,ex>x+1C.?x>0,ex≤x+1D.?x>0,ex≤x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆柱甲的底面半径R等于圆锥乙的底面直径,若圆柱甲的高为R,圆锥乙的侧面积为$\frac{{\sqrt{2}π{R^2}}}{4}$,则圆柱甲和圆锥乙的体积之比为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合$A=\left\{{x|0≤x<1}\right\},B=\left\{{x|\frac{1}{x}≥1}\right\}$,则A∪B=(  )
A.RB.[0,+∞)C.[0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线的标准方程为x2=8y,则抛物线的准线方程为(  )
A.x=2B.x=-2C.y=2D.y=-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{a}{3}$x3-$\frac{a+1}{2}$x2+x+b,其中a,b∈R.
(Ⅰ)若函数y=f(x)的极小值为4,且在点x=$\frac{1}{3}$处取到极大值,求函数f(x)的解析式;
(Ⅱ)当a>0时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,当椭圆上存在不同的两点关于直线y=4x+m对称时,则实数m的范围为:-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,已知ABCD是直角梯形,∠BAD=90°,AD∥BC,AD=2AB=2BC,PA⊥面ABCD.
(I)证明:PC⊥CD;
(II)在线段PA上确定一点E,使得BE∥面PCD.

查看答案和解析>>

同步练习册答案