精英家教网 > 高中数学 > 题目详情
15.从某企业生产的某种产品中随机抽取10件,测量这些产品的一项质量指标,其频率分布表如下:
质量指标值分组[10,30)[30,50)[50,70]
频率0.10.60.3
则可估计 这批产品的质量指标的方差为(  )
A.140B.142C.143D.134.8

分析 根据定义,计算质量指标的样本平均数$\overline{x}$和方差S2

解答 解:根据题意,计算质量指标的样本平均数为:
$\overline{x}$=20×0.1+40×0.6+60×0.3=44;
所以质量指标的样本方差为
S2=(44-20)2×0.1+(44-40)2×0.6+(44-60)2×0.3=134.8.
故选:D.

点评 本题考查了频率分布表、平均数和方差的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ex-e-x(x∈R).
(1)若g(x)=f(x)-f(2-x),解不等式g(2x+1)+g(x)>0;
(2)若函数h(x)=mf'(x)+f(x)-ex-m+1存在零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知角α的终边经过点P(-3,4).
(1)求$\frac{sin(π-α)+cos(-α)}{tan(π+α)}$的值;     
 (2)求$\frac{1}{2}$sin2α+cos2α+1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,(a+b+c)(a-b+c)=ac,则B=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个正四面体的骰子,四个面分别写有数字3,4,4,5,则将其投掷两次,骰子与桌面接触面上的数字之和的方差是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设P为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的动点,F1、F2为椭圆C的焦点,I为△PF1F2的内心,则直线IF1和直线IF2的斜率之积(  )
A.是定值B.非定值,但存在最大值
C.非定值,但存在最小值D.非定值,且不存在最值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$\overrightarrow{AB}$+$\overrightarrow{AC}$-$\overrightarrow{BC}$+$\overrightarrow{BA}$ 化简后等于(  )
A.3$\overrightarrow{AB}$B.$\overrightarrow{BA}$C.$\overrightarrow{AB}$D.$\overrightarrow{CA}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知$g(x)=\sqrt{x}$,求曲线g(x)在点(4,2)处的切线方程;
(2)已知函数f(x)=x3-3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
(3)求函数f(x)=x2-x-lnx的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,抛物线y2=4x的焦点为F,准线交x轴于点H,过H作直线l交抛物线于A,B两点,且|BF|=2|AF|,则△ABF的面积为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案