精英家教网 > 高中数学 > 题目详情
若直三棱柱ABC-A1B1C1的所有顶点都在球O的球面上,AA1=2
3
,AB=1,AC=2,∠ABC=90°,则球O的表面积为
16π
16π
分析:由于直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,我们可以把直三棱柱ABC-A1B1C1补成四棱柱,则四棱柱的体对角线是其外接球的直径,求出外接球的直径后,代入外接球的表面积公式,即可求出该三棱柱的外接球的表面积.
解答:解:由于直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,
把直三棱柱ABC-A1B1C1补成四棱柱,
则四棱柱的体对角线是其外接球的直径,
所以外接球半径为
1
2
12+(
3
)
2
+(2
3
)
2
=2,
则三棱柱ABC-A1B1C1外接球的表面积是4πR2=16π.
故答案为:16π.
点评:本题考查球的体积和表面积,球的内接体问题,考查学生空间想象能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,CC′=AC=BC=2,∠ACB=90°.
(1)如图给出了该直三棱柱三视图中的正视图,请根据此画出它的侧视图和俯视图;
(2)若P是AA′的中点,求四棱锥B′-C′A′PC的体积;
(3)求A′B与平面CB′所成角的正切值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)如图,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',点M,N分别为A'B和B'C'的中点.
(I)证明:MN∥平面A'ACC';
(II)若二面角A'-MN-C为直二面角,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A′B′C′中,CC′=AC=BC=2,∠ACB=90°.
(1)如图给出了该直三棱柱三视图中的正视图,请根据此画出它的侧视图和俯视图;
(2)若P是AA′的中点,求四棱锥B′-C′A′PC的体积;
(3)求A′B与平面CB′所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:《空间几何体》2013年高三数学一轮复习单元训练(浙江大学附中)(解析版) 题型:解答题

如图,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',点M,N分别为A'B和B'C'的中点.
(I)证明:MN∥平面A'ACC';
(II)若二面角A'-MN-C为直二面角,求λ的值.

查看答案和解析>>

同步练习册答案