图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔
、
与桥面
垂直,通过测量得知
,
,当
为
中点时,
.
(1)求
的长;
(2)试问
在线段
的何处时,
达到最大.
![]()
![]()
![]()
科目:高中数学 来源:2013-2014学年江苏省苏、锡、常、镇四市高三教学情况调查(一)文科数学试卷(解析版) 题型:解答题
已知函数
,其中m,a均为实数.
(1)求
的极值;
(2)设
,若对任意的![]()
,
恒成立,求
的最小值;
(3)设
,若对任意给定的
,在区间
上总存在
,使得
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省盐城市高三第三次模拟考试数学试卷(解析版) 题型:解答题
已知直线
在矩阵
对应的变换作用下变为直线
.
(1)求实数
,
的值;
(2)若点
在直线
上,且
,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省盐城市高三第三次模拟考试数学试卷(解析版) 题型:填空题
设
为数列
的前
项和,
,
,其中
是常数.若对于任意的
,
,
,
成等比数列,则
的值为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省盐城市高三第三次模拟考试数学试卷(解析版) 题型:填空题
某工厂甲、乙、丙三个车间生产同一产品,数量分别为120件,90件,60
件. 为了解它们的产品质量是否有显著差异,用分层抽样方法抽取了一个容量
为
的样本进行调查,其中从丙车间的产品中抽取了4件,则
.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三5月信息卷理科数学试卷(解析版) 题型:填空题
已知数列
是各项均不为
的等差数列,
为其前
项和,且满足
.若不等式
对任意的
恒成立,则实数
的最大值为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三Ⅲ级部决战四统测二理科数学试卷(解析版) 题型:填空题
若关于
的不等式
的解集中有且仅有4个整数解,则实数
的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com