精英家教网 > 高中数学 > 题目详情
(2013•江门二模)已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,直线l过点M(4,0).
(1)写出抛物线C2的标准方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1C的长轴长的最小值.
分析:(1)利用抛物线的标准方程中的p与焦点的关系即可得到
p
2
=1
即可得到抛物线的方程;
(2)设p(m,n),利用中点坐标公式可得OP中点为(
m
2
n
2
)
.由于O、P两点关于直线y=k(x-4)对称,利用轴对称的性质可得
n
2
=k(
m
2
-4)
n
m
•k=-1
,即可解出m,n,代人抛物线的方程可得k的值,再把直线l的方程y=k(x-4)与椭圆的方程联立消去一个未知数,得到关于另一个未知数的一元二次方程,由于有公共点,可得△≥0,即可得到a的取值范围,进而得到椭圆长轴长的最小值.
解答:解:(1)由题意,抛物线C2的焦点F(1,0),则
p
2
=1
,的p=2.
所以方程为:y2=4x.
(2)设p(m,n),
则OP中点为(
m
2
n
2
)

因为O、P两点关于直线
y=k(x-4)对称,
所以
n
2
=k(
m
2
-4)
n
m
•k=-1

km-n=8k
m+nk=0
,解之得
m=
8k2
1+k2
n=
-8k
1+k2

将其代入抛物线方程,得:(-
8k
1+k2
)2=4×
8k2
1+k2
,所以k2=1
联立 
y=k(x-4)
x2
a2
+
y2
b2
=1
,消去y,得:(b2+a2)x2-8a2x+16a2-a2b2=0,
由直线l与椭圆有公共点,∴△=(-8a22-4(b2+a2)(16a2-a2b2)≥0,得a2+b2≥16,
注意到b2=a2-1,即2a2≥17,解得2a≥
34

因此,椭圆C1长轴长的最小值为
34
点评:题综合考查了椭圆与抛物线的标准方程及其性质、直线与圆锥曲线相交问题转化为方程联立得到根与系数的关系、斜率的计算公式、中点坐标公式、轴对称等基础知识,需要较强的推理能力和计算能力、分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江门二模)(几何证明选讲)如图,圆O的直径AB=9,直线CE与圆O相切于点C,AD⊥CE于D,若AD=1,设∠ABC=θ,则sinθ=
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门二模)设等比数列{an}的前n项和为Sn.则“a1>0”是“S3>S2”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门二模)设集合A={x|-1≤x≤2,x∈N},集合B={2,3},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门二模)(坐标系与参数方程)在极坐标系中,设曲线C1:ρ=2sinθ与C2:ρ=2cosθ的交点分别为A、B,则线段AB的垂直平分线的极坐标方程为
ρsinθ+ρcosθ=1
ρsinθ+ρcosθ=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门二模)下列命题中假命题是(  )

查看答案和解析>>

同步练习册答案