精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(Ⅰ)求{an}的通项公式;          
(Ⅱ)设bn=
1
a2n-1a2n+1
求{bn}的通项公式
(Ⅲ)仔细观察下式
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)=1-
1
5
=
4
5
,并求数列{bn}的前n项和.
考点:数列的求和,归纳推理
专题:等差数列与等比数列
分析:(Ⅰ)直接建立方程组求解,确定数列的通项公式
(Ⅱ)利用(Ⅰ)的结论求出数列{bn}的通项公式
(Ⅲ)利用相消法求数列的前n项和.
解答: 解:(Ⅰ)设:等差数列{an}的首项为a1,公差为d,
∵S3=0,S5=-5,
解得:a1=1,d=-1,
an=2-n;
(Ⅱ)由(Ⅰ)得:a2n-1=3-2n  a2n+1=1-2n,
所以:bn=
1
a2n-1a2n+1
=
1
(2n-1)(2n-3)
=
1
2
(
1
2n-3
-
1
2n-1
)

(Ⅲ)由(Ⅱ)得:bn=
1
2
(
1
2n-3
-
1
2n-1
)

sn=b1 +b2+…+bn=
1
2
[(-1-1)+(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-3
-
1
2n-1
)
]=-
n+1
2n+1

故答案为:(Ⅰ)an=2-n.
(Ⅱ)bn=
1
2
(
1
2n-3
-
1
2n-1
)

(Ⅲ)sn=-
n+1
2n+1
点评:本题考查的知识要点:等差数列的通项公式,等差数列的前n项和公式,利用相消法求数列的和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=sin(2x+φ)(|φ|<
π
2
)向左平移
π
6
个单位后是奇函数,则函数f(x)在[0,
π
2
]上的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若有且只有一个常数c使得对于任意x∈[a,2a],都有y∈[a,a2]满足方程logaxy=c,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-mx2+6mx-m+8
的定义域为R,则实数m取值范围为(  )
A、{m|-1≤m≤0}
B、{m|-1<m<0}
C、{m|m≤0}
D、{m|m<-1或m>0}

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的性质,列表如下:
x0.511.51.71.922.12.22.33457
y8.554.174.054.00544.0054.024.044.355.87.57

(1)根据以上列表画出f(x)的图象,写出f(x)的单调区间及f(x)的最值;
(2)证明:函数f(x)=x+
4
x
(x>0)在区间(0,2)上递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示:m个实数a1,a2,…,am,(m≥3,m∈N)依次按顺时针方向围成一个圆圈.
(1)当m=2014时,若a1=1,an+1=an+2n(n∈N*且n<m),a1+a2+…+am的值;
(2)设圆圈上按顺时针方向任意相邻的三个数ap,aq,ai均满足:aq=λap+(1-λ)ai(λ>0),求证:a1=a2=…=am

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x3
3
+
1
2
ax2+2bx+c的两个极值分别为f(x1)和f(x2),若x1和x2分别在区间(-2,0)与(0,2)内,则
b-2
a-1
的取值范围为(  )
A、(-2,
2
3
B、[-2,
2
3
]
C、(-∞,-2)∪(
2
3
,+∞)
D、(-∞,-2]∪[
2
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面ABCD是菱形,PA⊥平面ABCD,点F为PC的中点.
(1)求证:PA∥平面BDF;
(2)求证:PC⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,且a1+a2=10,a3+a4=26,则过点P(n,an)和Q(n+1,an+1)(n∈N*)的直线的一个方向向量是(  )
A、(-
1
2
,-2)
B、(-1,-2)
C、(-
1
2
,-4)
D、(2,
1
4

查看答案和解析>>

同步练习册答案