精英家教网 > 高中数学 > 题目详情
某城市要建成宜商、宜居的国际化新城,该城市的东城区、西城区分别引进8个厂家,现对两个区域的16个厂家进行评估,综合得分情况如茎叶图所示.
(1)根据茎叶图判断哪个区域厂家的平均分较高;
(2)规定综合得分85分以上(含85分)为优秀厂家,若从该两个区域各选一个优秀厂家,求得分差距不超过5分的概率.
考点:列举法计算基本事件数及事件发生的概率,茎叶图
专题:概率与统计
分析:(Ⅰ)根据茎叶图求出东城区与西城区的平均分即可得出结论;
(Ⅱ)求出从两个区域各选一个优秀厂家的所有基本事件数,再求出满足得分差距不超过5的事件数,即可求出概率.
解答: 解:(Ⅰ)根据茎叶图知,东城区的平均分为
.
x东
=
1
8
(780+790+790+88+88+89+93+94)=86,
西城区的平均分为
.
x西
=
1
8
(72+79+81+83+84+85+94+94)=84,
∴东城区的平均分较高;
(Ⅱ)从两个区域各选一个优秀厂家,
所有的基本事件数为5×3=15种,
满足得分差距不超过5的事件(88,85)(88,85)(89,85)(89,94)(89,94)(93,94)(93,94)(94,94)(94,94)共9种,
∴满足条件的概率为P=
9
15
=
3
5
点评:本题通过茎叶图考查了平均数以及古典概型的概率问题,解题时应列出基本事件,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在海岛上有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距80
2
海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ(其中sinθ=
26
26
,θ为锐角)且与A点相距20
13
海里的位置C.
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船始终不改变航行的方向,经过多长时间后,该船从点C到达海岛正东方向的D点处.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:等差数列{an}的前n项和为Sn,若公差d=-2,S20=0.
(Ⅰ)求通项an及Sn
(Ⅱ)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D、E分别是BC、AP的中点.求异面直线AC与ED所成的角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:m2-m<0,命题q:
y2
2
+
x2
1+4m2
=1表示焦点在y轴上的椭圆.
(Ⅰ)若p∧q是真命题,求实数m的取值范围;
(Ⅱ) 若椭圆
y2
2
+
x2
1+4m2
=1的焦点到双曲线
x2
2
-
y2
2
=1的渐近线的距离为
2
2
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前6项如下表所示,其中奇数项成等差数列,偶数项成等比数列.
n123456
an123458
(1)写出数列{an}的通项公式(不要求推理过程);
(2)当n是偶数时,求Sn=a1a2+a3a4+a5a6+…+an-1an
(3)当n是奇数时,求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+1)=
1
f(x)+1
,且当x∈(0,1]时,f(x)=x,g(x)=m(x+3),若方程f(x)=g(x)在区间(-1,1]上有两个不同的实根,则实数m的取值范围是(  )
A、(0,
1
4
]
B、(0,
1
3
]
C、(
1
4
,1]
D、(
1
3
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)是R上的奇函数,且当x<0时,g(x)=-ln(1-x),设函数f(x)=
x3
 ,(x≤0)
g(x)
 ,(x>0)
,若f(x2-x)<f(6-2x),则实数x的取值范围是(  )
A、(-∞,-3)∪(2,+∞)
B、(-∞,-2)∪(3,+∞)
C、(-2,3)
D、(-3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位拟安排6名职工在春节放假期间(正月初一、初二、初三)值班,每天安排2人,每人值班1天,若6位职工中的甲不值正月初一,乙不值正月初三,则不同的安排方法共有
 
种.

查看答案和解析>>

同步练习册答案