精英家教网 > 高中数学 > 题目详情
5.下列四个有关算法的说法中,正确的是(2)(3)(4).( 要求只填写序号 )
(1)算法的各个步骤是可逆的;         (2)算法执行后一定得到确定的结果;
(3)解决某类问题的算法不是唯一的;    (4)算法一定在有限多步内结束.

分析 由算法的概念可知:算法是不唯一的,有限步,结果明确性,每一步操作明确的,即可判断①②③④是正误.

解答 解:由算法的概念可知:求解某一类问题的算法不是唯一的,算法的各个步骤是不可逆的,所以①不正确.
算法的概念可知:算法是不唯一的,有限步,结果明确性,②③④是正确的.
故答案为:(2)(3)(4).

点评 本题考查了算法的概念,解决问题最直接的方法就是明确概念,是个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)=sinx+2cosx,若函数g(x)=f(x)-m在x∈(0,π)上有两个不同零点α、β,则cos(α+β)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义在R上的函数f(x)同时满足:(i) f(1)=2;(ii)?x,y∈R,f(x+y+1)=f(x-y+1)-f(x)f(y); (iii) f(x)在区间[0,1]上是单调增函数.
(Ⅰ)求f(0)和f(-1)的值;
(Ⅱ)求函数f(x)的零点;
(Ⅲ)解不等式f(x)>$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α,β是三次函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}$+2bx的两个极值点,且 α∈(0,1),β∈(1,2),则$\frac{b-1}{a-1}$的范围(  )
A.$(0,\frac{1}{2})$B.(0,1)C.$(-\frac{1}{2},0)$D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在矩形ABCD中,已知$AB=\sqrt{3},AD=2$,点E是BC的中点,点F在CD上,若$\overrightarrow{AB}•\overrightarrow{AF}$=$\sqrt{3}$,则$\overrightarrow{AE}•\overrightarrow{BF}$的值是$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于集合A={x|0≤x≤2},B={y|0≤y≤3},则由下列图形给出的对应f中,能构成从A到B的函数的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.关于函数f(x)=2x的图象变换正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义在(0,+∞)上的函数f(x)对任意正数p,q都有$f(pq)=f(p)+f(q)-\frac{1}{2}$,当x>4时,f(x)>$\frac{3}{2}$,且f($\frac{1}{2}$)=0.
(1)求f(2)的值;
(2)证明:函数f(x)在(0,+∞)上是增函数;
(3)解关于x的不等式f(x)+f(x+3)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在四面体ABCD中,E、F分别是棱AD、BC的中点,则向量$\overrightarrow{EF}$与$\overrightarrow{AB}$、$\overrightarrow{CD}$的关系是(  )
A.$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{CD}$B.$\overrightarrow{EF}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{CD}$C.$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{CD}$D.$\overrightarrow{EF}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{CD}$

查看答案和解析>>

同步练习册答案