精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.
(I)求证:A1B∥平面AEC1
(Ⅱ)求证:B1C⊥平面AEC1
分析:对(I),根据三角形的中位线平行于底边,在平面内作平行线,再由线线平行⇒线面平行.
对(II),根据直棱柱的性质,侧棱与侧面都与底面垂直,可证平面内的AE与B1C垂直;
利用平面几何与三角函数知识,证C1E与B1C垂直;再由线线垂直⇒线面垂直.
解答:证明:(I) 连接A1C交AC1于点O,连接EO
∵ACC1A1为正方形,∴O为中点
∴EO∥A1B,EO?平面AEC1,A1B?平面AEC1
∴A1B∥平面AEC1
(Ⅱ)∵AB=AC,E是BC的中点,∴AE⊥BC
∵直三棱柱ABC-A1B1C1中,平面ABC⊥平面BB1C1C,
∴AE⊥平面BB1C1C,B1C?平面BB1C1C,
∴B1C⊥AE
在矩形BCC1B1中,tan∠CB1C1=tan∠EC1C=
2
2

∵∠CB1C1+∠B1CC1=
π
2

∴∠B1CC1+∠EC1C═
π
2

∴B1C⊥EC1
又AE∩EC1=E,
∴B1C⊥平面AEC1

点评:本题考查线面垂直的判定、线面平行的判定.证明(I)也可由面面平行证线面平行,即取B1C1的中点F,证平面BFA1∥平面AEC1.在证明(II)时,利用三角函数知识与平面几何知识证线线垂直也是常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案