精英家教网 > 高中数学 > 题目详情
7.若正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为$\sqrt{3}$,D为BC的中点,则三棱锥A-B1DC1的体积为1.

分析 由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.

解答 解:∵正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为$\sqrt{3}$,D为BC中点,
∴底面B1DC1的面积:$\frac{1}{2}×2×\sqrt{3}$=$\sqrt{3}$,
A到底面的距离就是底面正三角形的高:$\sqrt{3}$.
三棱锥A-B1DC1的体积为:$\frac{1}{3}×\sqrt{3}×\sqrt{3}$=1.
故答案为:1.

点评 本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知点P(sinα-cosα,sinαcosα)在第一象限,在[0,2π)内求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax+\frac{a}{4},(x<1)}\\{{{a}^{x},x≥1)}^{\;}}\end{array}\right.$若y=f(x)在(-∞,+∞)上单调递增,则实数a的取值范围是(  )
A.[2,4]B.(2,4)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设${x^5}={a_0}+{a_1}(2-x)+{a_2}{(2-x)^2}+…+{a_5}{(2-x)^5}$,那么$\frac{{{a_0}+{a_2}+{a_4}}}{{{a_1}+a{\;}_3}}$的值为(  )
A.$-\frac{122}{121}$B.$-\frac{61}{60}$C.-$\frac{244}{241}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=1+\frac{|x|-x}{2}({-2<x≤2})$.
(1)画出该函数的图象;
(2)写出该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.用一张正方形的包装纸把一个棱长为1的正方体完全包住,要求不能将正方形纸撕开,则所需包装纸的最小面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=cos$\frac{2π}{3}cos(\frac{π}{2}+2x)$,则函数f(x)满足(  )
A.f(x)的最小正周期是2πB.当x∈$[-\frac{π}{6},\frac{π}{3}]$时,f(x)的值域为$[-\frac{{\sqrt{3}}}{4},\frac{{\sqrt{3}}}{4}]$
C.f(x)的图象关于直线x=$\frac{3π}{4}$对称D.若x1≠x2,则f(x1)≠f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线x-y+6=0被圆(x+2)2+y2=16截得的弦长等于(  )
A.$2\sqrt{2}$B.$3\sqrt{2}$C.$4\sqrt{2}$D.$12\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC三个顶点是A(3,3),B(-3,1),C(2,0).
(1)求AB边中线CD所在直线方程;
(2)求AB边的垂直平分线的方程;
(3)求△ABC的面积.

查看答案和解析>>

同步练习册答案