设l的方程为y=
x,动点M到l的距离与到x轴距离之和为3的点的轨迹是
矩形
圆
椭圆
双曲线
科目:高中数学 来源:广东省海丰县彭湃中学2008届高三年级入学考试数学(理) 题型:044
设抛物线过定点A(-1,0),且以直线x=1为准线.
(Ⅰ)求抛物线顶点的轨迹C的方程;
(Ⅱ)若直线l与轨迹C交于不同的两点M,N,且线段MN恰被直线
平分,设弦MN的垂直平分线的方程为y=kx+m,试求m的取值范围.
查看答案和解析>>
科目:高中数学 来源:广东省海丰县彭湃中学2008届高三年级入学考试数学(文) 题型:044
设抛物线过定点A(-1,0),且以直线x=1为准线.
(Ⅰ)求抛物线顶点P的轨迹C的方程;
(Ⅱ)若直线l与轨迹C交于不同的两点M,N,且线段MN恰被直线
平分,设弦MN的垂直平分线的方程为y=kx+m,试求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
设直线l的方程为(a+1)x+y-2-a=0(a∈R).
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若a>-1,直线l与x、y轴分别交于M、N两点,O为坐标原点,求△OMN面积取最小值时,直线l对应的方程.
查看答案和解析>>
科目:高中数学 来源:2013届山西省晋商四校高二下学期联考理科数学试卷(解析版) 题型:解答题
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-
的距离为
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用
,设出点A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在椭圆
+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-
的距离为
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为
+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知![]()
,![]()
∴
……6分
∵A、B在椭圆
+y2=1上,
∴
……10分
∴l的斜率为
=
.
∴l的方程为y=
(x-
),即
x-y-
=0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com