精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)若处取到极值,求的值,并求的单调区间;

2)若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.

【答案】1;单调增区间为,单调减区间为;(2.

【解析】

1)首先求出导函数,根据题意可得,求出的值,然后令,求出单调递增区间,令,求出单调递减区间.

2)令是关于的一次函数且为减函数,根据题意只需令,存在,使得即可,求出,令,讨论的取值范围,确定的单调性,根据函数的单调性即可求解.

解:(1

由题意,得

,解得

所以

所以

,解得.令,解得

所以的单调增区间为,单调减区间为

2)令

是关于的一次函数且为减函数,

由题意,对任意,都存在,使得成立,.

有解.

,只需存在,使得即可.

由于

,则上递增,

①当时,,即单调递增,

,不符合题意.

②当时,

,则

所以在恒成立,即恒成立,所以上单调递减,

所以存在,使得,符合题意.

,则,所以在上一定存在实数,使得

所以在恒成立,即恒成立,所以上单调递减,

所以存在,使得,符合题意.

综上所述,当时,对任意,都存在,使得成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第道题也由该同学(最先答题的同学)作答的概率为),其中,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是,如果某位同学有机会答第道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题

1)请预测第二轮最先开始作答的是谁?并说明理由

2)①求第二轮答题中

②求证为等比数列,并求)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求理、化必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( .

A.444B.1776C.1440D.1560

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,抛物线上的点到焦点的距离为2

1)求抛物线的方程和的值;

2)如图,是抛物线上的一点,过作圆的两条切线交轴于两点,若的面积为,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轴正半轴上的动点作曲线的切线,切点为,线段的中点为,设曲线轴的交点为

1)求的大小及的轨迹方程;

2)当动点到直线的距离最小时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为

1)求椭圆的方程.

2)设直线过点且与椭圆交于两点.过点作直线的垂线,垂足为.证明直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为确定数学成绩与玩手机之间的关系,从全校随机抽样调查了40名同学,其中40%的人玩手机.这40位同学的数学分数(百分制)的茎叶图如图所示.

数学成绩不低于70分为良好,低于70分为一般.

1)根据以上资料完成下面的列联表,并判断有多大把握认为数学成绩良好与不玩手机有关系

良好

一般

总计

不玩手机

玩手机

总计

40

2)现将40名同学的数学成绩分为如下5组:

.其频率分布直方图如图所示.计算这40名同学数学成绩的平均数,由茎叶图得到的真实值记为,由频率分布直方图得到的估计值记为(同一组中的数据用该组区间的中点值作代表),求的误差值.

3)从这40名同学数学成绩高于90分的7人中随机选取2人介绍学习方法,求这2保不玩手机的人数的分布列和数学期望.

附:,这40名同学的数学成绩总和为2998分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名观众进行调查,其中有名男观众和名女观众,将这名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在分钟以上(包括分钟)的称为“朗读爱好者”,收视时间在分钟以下(不包括分钟)的称为“非朗读爱好者”.

(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取名,再从这名观众中任选名,求至少选到名“朗读爱好者”的概率;

(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

同步练习册答案