£¨2009•ÉϺ£Ä£Ä⣩ÒÑÖªµãÁÐB1£¨1£¬y1£©£¬B2£¨2£¬y2£©£¬¡­£¬Bn£¨n£¬yn£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪֱÏßy=
x4
Éϵĵ㣬µãÁÐA1£¨x1£¬0£©£¬A2£¨x2£¬0£©£¬¡­£¬An£¨xn£¬0£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÈÎÒâµÄn¡ÊN*£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬xn+2-xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©¶ÔÉÏÊöµÈÑüÈý½ÇÐÎAnBnAn+1Ìí¼ÓÊʵ±Ìõ¼þ£¬Ìá³öÒ»¸öÎÊÌ⣬²¢×ö³ö½â´ð£®£¨¸ù¾ÝËùÌáÎÊÌâ¼°½â´ðµÄÍêÕû³Ì¶È£¬·Öµµ´Î¸ø·Ö£©
·ÖÎö£º£¨1£©¸ù¾ÝBn£¨n£¬yn£©ÔÚÖ±Ïßy=
x
4
ÉϿɵÃyn=
n
4
£¬È»ºó¸ù¾ÝµÈ²îÊýÁеĶ¨Òå¿ÉÖªÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÓÉÌâÒâµÃ
xn+xn+1
2
=n
£¬Ôòxn+xn+1=2n£¬¸ù¾ÝµÝÍƹØϵÓÖÓÐxn+2+xn+1=2£¨n+1£©Á½Ê½×÷²î¿ÉµÃxn+2-xnÊdz£Êý£¬´Ó¶øx1£¬x3£¬x5£¬¡­£»x2£¬x4£¬x6£¬¡­¶¼ÊǵȲîÊýÁУ¬¼´¿ÉÇó³öÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©Ìá³öÎÊÌ⣺ÈôµÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÊÇ·ñÓÐÖ±½ÇÈý½ÇÐΣ¬ÈôÓУ¬Çó³öʵÊýa£®ÌÖÂÛnµÄÆæż£¬Çó³ö|AnAn+1|£¬¹ýBn×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪCn£¬Ôò|BnCn|=
n
4
£¬ÒªÊ¹µÈÑüÈý½ÇÐÎAnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬±ØÐëÇÒÖ»Ð룺|AnAn+1|=2|BnCn|£¬´Ó¶øÇó³öaµÄÖµ£®
½â´ð£º½â£º£¨1£©ÒÀÌâÒâÓÐyn=
n
4
£¬ÓÚÊÇyn+1-yn=
1
4
£®
ËùÒÔÊýÁÐ{yn}ÊǵȲîÊýÁУ®£¨4·Ö£©
£¨2£©ÓÉÌâÒâµÃ
xn+xn+1
2
=n
£¬¼´xn+xn+1=2n£¬£¨n¡ÊN*£©         ¢Ù
ËùÒÔÓÖÓÐxn+2+xn+1=2£¨n+1£©£®¢Ú
ÓÉ¢Ú-¢ÙµÃ£ºxn+2-xn=2£¬ËùÒÔxn+2-xnÊdz£Êý£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨6·Ö£©
ÓÉx1£¬x3£¬x5£¬¡­£»x2£¬x4£¬x6£¬¡­¶¼ÊǵȲîÊýÁУ®x1=a£¨0£¼a£¼1£©£¬x2=2-a£¬ÄÇôµÃ 
 x2k-1=x1+2£¨k-1£©=2k+a-2£¬x2k=x2+2£¨k-1£©=2-a+2£¨k-1£©=2k-a£®£¨k¡ÊN*£©£¨8·Ö£©
¹Êxn=
n+a-1(nΪÆæÊý)
n-a(nΪżÊý)
£¨10·Ö£©
£¨3£©Ìá³öÎÊÌ⣺ÈôµÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÊÇ·ñÓÐÖ±½ÇÈý½ÇÐΣ¬ÈôÓУ¬Çó³öʵÊýa£®
½â£ºµ±nΪÆæÊýʱ£¬An£¨n+a-1£¬0£©£¬An+1£¨n+1-a£¬0£©£¬ËùÒÔ|AnAn+1|=2£¨1-a£©£»
µ±nΪżÊýʱ£¬An£¨n-a£¬0£©£¬An+1£¨n+a£¬0£©£¬ËùÒÔ|AnAn+1|=2a£»
¹ýBn×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪCn£¬Ôò|BnCn|=
n
4
£¬ÒªÊ¹µÈÑüÈý½ÇÐÎAnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬±ØÐëÇÒÖ»Ð룺|AnAn+1|=2|BnCn|£®£¨13·Ö£©
µ±nΪÆæÊýʱ£¬ÓÐ2(1-a)=2¡Á
n
4
£¬¼´a=1-
n
4
¢Ù
¡àµ±n=1 Ê±£¬a=
3
4
£»µ± n=3 Ê±£¬a=
1
4
£¬µ±n¡Ý5£¬a£¼0²»ºÏÌâÒ⣮£¨15·Ö£©
µ±nΪżÊýʱ£¬ÓÐ2a=2¡Á
n
4
£¬a=
n
4
£¬Í¬Àí¿ÉÇóµÃ 
 µ±n=2 Ê±  a=
1
2

µ±n¡Ý4ʱ£¬a£¼0²»ºÏÌâÒ⣮£¨17·Ö£©
×ÛÉÏËùÊö£¬Ê¹µÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÓÐÖ±½ÇÈý½ÇÐΣ¬aµÄֵΪ
3
4
»ò
1
4
»ò
1
2
£®£¨18·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÊýÁÐÓ뼸ºÎµÄ×ۺϣ¬Í¬Ê±¿¼²éÁËÊýÁеÄͨÏʽ£¬µÚÈýÎÊÊÇ¿ª·ÅÌ⣬ÓÐÒ»¶¨µÄÐÂÒ⣬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÉϺ£Ä£Ä⣩ÔÚ½â¾öÎÊÌ⣺¡°Ö¤Ã÷Êý¼¯A={x|2£¼x¡Ü3}ûÓÐ×îСÊý¡±Ê±£¬¿ÉÓ÷´Ö¤·¨Ö¤Ã÷£®¼ÙÉèa£¨2£¼a¡Ü3£©ÊÇAÖеÄ×îСÊý£¬ÔòÈ¡a¡ä=
a+2
2
£¬¿ÉµÃ£º2=
2+2
2
£¼a¡ä=
a+2
2
£¼
a+a
2
=a¡Ü3
£¬Óë¼ÙÉèÖС°aÊÇAÖеÄ×îСÊý¡±Ã¬¶Ü£¡ÄÇô¶ÔÓÚÎÊÌ⣺¡°Ö¤Ã÷Êý¼¯B={x|x=
n
m
£¬m£¬n¡ÊN*£¬²¢ÇÒn£¼m}
ûÓÐ×î´óÊý¡±£¬Ò²¿ÉÒÔÓ÷´Ö¤·¨Ö¤Ã÷£®ÎÒÃÇ¿ÉÒÔ¼ÙÉèx=
n0
m0
ÊÇBÖеÄ×î´óÊý£¬Ôò¿ÉÒÔÕÒµ½x'=
n0+1
m0+1
n0+1
m0+1
£¨ÓÃm0£¬n0±íʾ£©£¬ÓÉ´Ë¿ÉÖªx'¡ÊB£¬x'£¾x£¬ÕâÓë¼ÙÉèì¶Ü£¡ËùÒÔÊý¼¯BûÓÐ×î´óÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÉϺ£Ä£Ä⣩¶¨ÒåÇø¼ä£¨m£¬n£©£¬[m£¬n]£¬£¨m£¬n]£¬[m£¬n£©µÄ³¤¶È¾ùΪn-m£¬ÆäÖÐn£¾m£®
£¨1£©Èô¹ØÓÚxµÄ²»µÈʽ2ax2-12x-3£¾0µÄ½â¼¯¹¹³ÉµÄÇø¼äµÄ³¤¶ÈΪ
6
£¬ÇóʵÊýaµÄÖµ£»
£¨2£©ÒÑÖª¹ØÓÚxµÄ²»µÈʽsinxcosx+
3
cos2x+b£¾0
£¬x¡Ê[0£¬¦Ð]µÄ½â¼¯¹¹³ÉµÄ¸÷Çø¼äµÄ³¤¶ÈºÍ³¬¹ý
¦Ð
3
£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£»
£¨3£©ÒÑÖª¹ØÓÚxµÄ²»µÈʽ×é
7
x+1
£¾1 
log2x+log2(tx+3t)£¼2
µÄ½â¼¯¹¹³ÉµÄ¸÷Çø¼ä³¤¶ÈºÍΪ6£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÉϺ£Ä£Ä⣩ÒÑ֪ȫ¼¯U=R£¬¼¯ºÏA={x|x2-2x-3¡Ü0£¬x¡ÊR}£¬B={x||x-2|£¼2£¬x¡ÊR}£¬ÄÇô¼¯ºÏA¡ÉB=
{x|0£¼x¡Ü3}
{x|0£¼x¡Ü3}
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÉϺ£Ä£Ä⣩ÒÑÖª¼¯ºÏA={z|z=1+i+i2+¡­+in£¬n¡ÊN*}£¬B={¦Ø|¦Ø=z1•z2£¬z1¡¢z2¡ÊA}£¬£¨z1¿ÉÒÔµÈÓÚz2£©£¬´Ó¼¯ºÏBÖÐÈÎÈ¡Ò»ÔªËØ£¬Ôò¸ÃÔªËصÄģΪ
2
µÄ¸ÅÂÊΪ
2
7
2
7
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸