精英家教网 > 高中数学 > 题目详情
已知函数
(I)求函数f(x)的单调递增区间;
(II)设函数,若对于任意的x∈(0,2],都有f(x)≥g(x)成立,求a的取值范围.
【答案】分析:(I)先出函数的导函数,然后解不等式f'(x)>0,求出的解集即为函数f(x)的单调递增区间;
(II)对于任意的x∈(0,2],都有f(x)≥g(x)成立即≤4x2+在x∈(0,2]上恒成立,然后将a分离出来,使a小于等于的最小值,即可求出a的范围.
解答:解:(I)∵
∴f'(x)=8x-
令8x->0解得:x>
∴函数f(x)的单调递增区间(,+∞)
(II)∵对于任意的x∈(0,2],都有f(x)≥g(x)成立
≤4x2+在x∈(0,2]上恒成立
即a≤
在(0,2]上的最小值为2
∴0<a≤2
点评:本题主要考查了利用导数研究函数的单调性,以及闭区间上的最值和恒成立等有关知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(I)求函数f(x)的解析式;
(II)若经过点M(2,m)可以作出曲线y=f(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数.

(I)求函数的最小正周期;

(II)当时,求的值。

查看答案和解析>>

科目:高中数学 来源:2011届北京市东城区高三年级十校联考文科数学 题型:解答题

(本题满分14分)已知函数
(I)求函数的单调区间与极值;
(II)若对于任意恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年贵州黔东南州高三第二次模拟(5月)考试文科数学试卷(解析版) 题型:解答题

已知函数

(I)求函数的最小值;

(II)对于函数定义域内的任意实数,若存在常数,使得不等式都成立,则称直线是函数的“分界线”.

设函数,试问函数是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省日照市高三上学期测评理科数学试卷 题型:解答题

已知函数

(I)求函数的最小值和最小正周期;

(II)已知△ABC内角A,B,C的对边分别为a,b,c,且,若向量共线,求a,b的值。

 

查看答案和解析>>

同步练习册答案