精英家教网 > 高中数学 > 题目详情
9.已知a=sin21°,b=cos72°,c=tan23°,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>b>aD.c>a>b

分析 先判定a>b,再判定c>a,即可得出结论.

解答 解:a=sin21°,b=cos72°=sin18°,∴a>b,
c=tan23°>tan21°>sin21°,∴c>a,
∴c>a>b,
故选D.

点评 本题考查三角函数值的比较,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.请你设计一个仓库.它的上部是底面圆半径为5m的圆锥,下部是底面圆半径为5m的圆柱,且该仓库的总高度为5m.经过预算,制造该仓库的圆锥侧面、圆柱侧面用料的单价分别为4百元/m2,1百元/m2,设圆锥母线与底面所成角为θ,且$θ∈({0,\frac{π}{4}})$.
(1)设该仓库的侧面总造价为y,写出y关于θ的函数关系式;
(2)问θ为多少时,该仓库的侧面总造价(单位:百元)最少?并求出此时圆锥的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若关于x的不等式|x-1|+|x-2|>log4a2恒成立,则实数a的取值范围为(  )
A.(-2,2)B.(-∞,-2)C.(2,﹢∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知三棱锥P-ABC的体积为10,其三视图如图所示,则这个三棱锥最长的一条侧棱长等于$\sqrt{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,某几何体的正视图和俯视图是两个半径相等的圆,侧视图中两条半径相互垂直.若该几何体的表面积是4πa2,则它的体积是(  )
A.$\frac{4}{3}π{a^3}$B.πa3C.$\frac{2}{3}π{a^3}$D.$\frac{1}{3}π{a^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=sinx+cosx,g(x)=sinx-cosx,其中x∈(0,π).
(1)若$f(θ)=\frac{1}{5}$,求tanθ的值;
(2)若$\frac{f(θ)}{g(θ)}=\frac{1}{5}$,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线${y^2}=-4\sqrt{5}x$的焦点与椭圆$\frac{x^2}{a^2}+\frac{y^2}{4}=1(a>0)$的一焦点重合,则该椭圆的离心率为$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线x=t分别与函数$f(x)=sin(2x-\frac{π}{12})$、g(x)=$\sqrt{3}cos(2x-\frac{π}{12})$的图象交于P、Q两点,当实数t变化时,|PQ|的最大值为(  )
A.2B.$\sqrt{3}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$sinα=\frac{1}{5}$,则cos2α=(  )
A.$\frac{23}{25}$B.$-\frac{2}{25}$C.$-\frac{23}{25}$D.$\frac{2}{25}$

查看答案和解析>>

同步练习册答案