精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

已知函数f(x)=log2.

(1)判断并证明f(x)的奇偶性;

(2)若关于x的方程f(x)=log2(x-k)有实根,求实数k的取值范围;

(3)问:方程f(x)=x+1是否有实根?如果有,设为x0,请求出一个长度

的区间(a,b),使x0∈(a,b);如果没有,请说明理由.

(注:区间(a,b)的长度为b-a)

 

【答案】

 

(1)f(x)是奇函数

(2)(-∞,1)。

(3)区间(-,-)的中点g(-)>0(4')

【解析】解:(1)由得-1<x<1,所以函数f(x)的定义域为(-1,1);              (2')

因为f(-x)+f(x)=log2+log2=log2=log21=0,

所以f(-x)=-f(x),即f(x)是奇函数。                                       (4')

(2)方程f(x)=log2(x-k)有实根,也就是方程=x-k即k=x-在(-1,1)内有解,所以实数k属于函数y=x-=x+1-在(-1,1)内的值域。                  (6')

令x+1=t,则t∈(0,2),因为y=t-在(0,2)内单调递增,所以t-∈(-∞,1)。

故实数k的取值范围是(-∞,1)。                                            (8')

(3)设g(x)=f(x)-x-1=log2-x-1(-1<x<1)。

因为,且y=log2x在区间(0,+∞)内单调递增,所以log2<log223,即4log2<3,亦即log2<。于是g(-)=log2-<0。                 ①     (10')

又∵g (-)=log2->1->0。                                    ②     (12')

由①②可知,g(-)·g(-)<0,所以函数g(x)在区间(-,-)内有零点x0。

即方程f(x)=x+1在(-,-)内有实根x0。                                  (13')

又该区间长度为,因此,所求的一个区间可以是(-,-)。(答案不唯一)      (14')

思路提示:用“二分法”逐步探求,先算区间(-1,1)的中点g(0)=-1<0(1'),由于g(x)在(-1,1)内单调递减,于是再算区间(-1,0)的中点g(-)=log23->0(2'),然后算区间(-,0)的中点 g(-)<0(3'),最后算区间(-,-)的中点g(-)>0(4')。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案