分析 (1)由a1=3,及Sn+1-2=4an,可得b1=a2-2a1=1,又当n≥2时,有Sn-2=4an-1,与条件相减,即可证得{bn}是以b1=1为首项、以2为公比的等比数列,并能写出{bn}的通项公式.
(2)由已知得T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n-2+c2n)=(20+22+…+22n-2)+(1+3+…+2n-1),由此能求出结果.
解答 (1)证明:∵数列{an}的前n项和为Sn,a1=3,Sn+1-2=4an,①
∴当n≥2时,Sn-2=4an-1,②
①-②,得:an+1=4an-4an-1,
∵bn=an+1-2an,∴bn=2an-4an-1,bn+1=2an+1-4an=4an-8an-1,
∴$\frac{{b}_{n+1}}{{b}_{n}}$=2,
∴数列{bn}为公比为2的等比数列.
∵数列{an}的前n项和为Sn,a1=3,Sn+1-2=4an,
∴3+a2-2=4×2,解得a2=7,
∴b1=a2-2a1=7-2×3=1,
∴${b}_{n}={2}^{n-1}$.
(2)解:∵数列{cn}满足cn=$\left\{\begin{array}{l}{{2}^{n-1},n为奇数}\\{lo{g}_{2}{b}_{n},n为偶数}\end{array}\right.$,
∴${c}_{n}=\left\{\begin{array}{l}{{2}^{n-1},n为奇数}\\{n-1,n为偶数}\end{array}\right.$,
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n-2+c2n)
=(20+22+…+22n-2)+(1+3+…+2n-1)
=$\frac{1-{4}^{n}}{1-4}$+$\frac{n(1+2n-1)}{2}$
=$\frac{{4}^{n}-1}{3}+{n}^{2}$.
点评 本题考查数列递推式,考查等比数列与等差数列的证明,考查数列的通项,正确运用等差数列与等比数列的定义是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com