精英家教网 > 高中数学 > 题目详情

 

    如图,在五棱锥P—ABCDE中,平面ABCDE,AB//CD,AC//ED,AE//BC,,三角形PAB是等腰三角形。

   (Ⅰ)求证:平面PCD 平面PAC;

   (Ⅱ)求直线PB与平面PCD所成角的大小;

   (Ⅲ)求四棱锥P—ACDE的体积。

 

 

【答案】

 

【解析】(Ⅰ)证明:因为ABC=45°,

AB=2BC=4,

所以在中,由余弦定理得:

,解得

所以,即,又PA⊥平面ABCDE,所以PA

又PA,所以,又ABCD,所以,又因为

,所以平面PCD⊥平面PAC

(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,

过点A作于H,则

,又ABCDAB平面内,所以AB平行于平面,所以点A到平面的距离等于点B到平面的距离,过点B作BO⊥平面于点O,则为所求角,且,又容易求得

所以,即=,所以直线PB与平面PCD所成角的大小为

(Ⅲ)由(Ⅰ)知,所以,又ACED,所以四边形ACDE是直角梯形,又容易求得,AC=

所以四边形ACDE的面积为

所以四棱锥PACDE的体积为=

【命题意图】本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的体积计算问题,考查了同学们的空间想象能力以及空间思维能力。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在五棱锥P-ABCD中PA 丄平面ABCDE,PA=AB=AE=2BC=2DE=2,∠DEA=∠EAB=∠ABC=90°精英家教网
(1)求二面角P-DE-A的大小
(2)求直线PC与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在五棱锥P-ABCDE中,PA=AB=AE=2a,PB=PE=2
2
 a
,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.
(1)求证:PA⊥平面ABCDE;
(2)求异面直线CD与PB所成角的大小;
(3)求二面角A-PD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五棱锥P-ABCD中PA 丄平面ABCDE,PA=AB=AE=2BC=2DE=2,∠DEA=∠EAB=∠ABC=90°
(1)求二面角P-DE-A的大小
(2)求直线PC与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市西南师大附中高三(下)第六次月考数学试卷(文科)(解析版) 题型:解答题

如图,在五棱锥P-ABCDE中,PA=AB=AE=2a,PB=PE=,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.
(1)求证:PA⊥平面ABCDE;
(2)求异面直线CD与PB所成角的大小;
(3)求二面角A-PD-E的大小.

查看答案和解析>>

科目:高中数学 来源:2011年湖南省长沙市高考数学模拟试卷(理科)(解析版) 题型:解答题

如图,在五棱锥P-ABCD中PA 丄平面ABCDE,PA=AB=AE=2BC=2DE=2,∠DEA=∠EAB=∠ABC=90°
(1)求二面角P-DE-A的大小
(2)求直线PC与平面PDE所成角的正弦值.

查看答案和解析>>

同步练习册答案