精英家教网 > 高中数学 > 题目详情
(2013•永州一模)已知函数f(x)=mlnx+
1
x
,(其中m为常数)
(1)试讨论f(x)在区间(0,+∞)上的单调性;
(2)令函数h(x)=f(x)+
1
m
lnx
-x.当m∈[2,+∞)时,曲线y=h(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得过P、Q点处的切线互相平行,求x1+x2的取值范围.
分析:(1)求导函数,对m分类讨论,利用导数的正负,即可得到f(x)在区间(0,+∞)上的单调性;
(2)利用过P、Q点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x1+x2的取值范围.
解答:解:(1)∵f′(x)=
m
x
-
1
x2
=
mx-1
x2
(x>0)
∴m≤0时,f′(x)<0,f(x)在区间(0,+∞)上是减函数;
m>0时,f′(x)>0可得x>
1
m
,f′(x)<0可得x<
1
m

∴函数f(x)在(0,
1
m
)上是减函数,在(
1
m
,+∞)上是增函数;
(2)由题意,可得h′(x1)=h′(x2)(x1,x2>0,且x1≠x2
m+
1
m
x1
-
1
x12
-1
=
m+
1
m
x2
-
1
x22
-1
 
x1+x2=(m+
1
m
)x1x2
    
∵x1≠x2,由不等式性质可得x1x2<(
x1+x2
2
)2
恒成立,
又x1,x2,m>0
x1+x2<(m+
1
m
)(
x1+x2
2
)2

x1+x2
4
m+
1
m
对m∈[2,+∞)恒成立
令g(m)=m+
1
m
(m≥2),则g′(m)=
(m+1)(m-1)
m2
>0
对m∈[2,+∞)恒成立
∴g(m)在[2,+∞)上单调递增,∴g(m)≥g(2)=
5
2
             
4
m+
1
m
4
g(2)
=
8
5
                                
∴x1+x2的取值范围为(
8
5
,+∞
).
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•永州一模)提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x≤200时,车流速度v与车流密度x满足v(x)=40-
k
250-x
.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时.
(Ⅰ)当0<x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到个位,参考数据
5
≈2.236

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)已知A,B是圆C(为圆心)上的两点,|
AB
|=2,则
AB
AC
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)设集合A={x|-1<x<2},B={x|x2≤1},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)“x≠3”是“|x-3|>0”的(  )

查看答案和解析>>

同步练习册答案