精英家教网 > 高中数学 > 题目详情
10.若sinα=3sin(α-2β),则tan(α-β)+2tanβ=4tanβ.

分析 由已知可得sin[(α-β)+β]=3sin[(α-β)-β],利用两角和与差的正弦函数公式,同角三角函数基本关系式可得tan(α-β)=2tanβ,由此化简所求即可得解.

解答 解:∵sinα=3sin(α-2β),
∴sin[(α-β)+β]=3sin[(α-β)-β],
∴sin(α-β)cosβ+cos(α-β)sinβ=3sin(α-β)cosβ-3cos(α-β)sinβ,
∴-2cos(α-β)sinβ=sin(α-β)cosβ,
∴tan(α-β)=2tanβ,
∴tan(α-β)+2tanβ=2tanβ+2tanβ=4tanβ.
故答案为:4tanβ.

点评 本题主要考查了两角和与差的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.定义在[-10,10]上的偶函数f(x)在(-∞,0)是单调递减,f(2a2+a+1)<f(3a2-2a+1),则a的取值范围如何?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某公司计划购买1台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元,在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100台这种机器在三年使用期内更 换的易损零件数,得下面柱状图:

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.
若n=19,求y与x的函数解析式;
(1)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;
(2)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应 购买19个还是20个易损零件?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数y=f(x)图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,再把所得的图象沿x轴向右平移$\frac{π}{2}$个单位,这样所得的曲线与y=3sinx的图象相同,则函数y=f(x)的表达式是(  )
A.$f(x)=3sin({\frac{x}{2}-\frac{π}{2}})$B.$f(x)=3sin({\frac{x}{2}+\frac{π}{4}})$C.f(x)=-3sinxD.f(x)=3cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.近年来大气污染防治工作得到各级部门的重视,某企业现有设备下每日生产总成本y(单位:万元)与日产量x(单位:吨)之间的函数关系式为y=2x2+(15-4k)x+120k+8,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为k万元,除尘后当日产量x=1时,总成本y=142.
(1)求k的值;
(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知命题p:方程4x2-4(m-2)x+1=0有两个不相等的负根;命题q:方程x2+3mx+1=0无实根.若p∨q为真,¬q为真,则实数m的取值范围是m≤-$\frac{2}{3}$,或$\frac{2}{3}$≤m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,一个三棱柱的底面是边长为2的正三角形,侧棱CC1⊥BC,CC1=3,有一虫子从A沿三个侧面爬到A1,求CN的高度h及虫子爬行的最短距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知:已知函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax,
(1)若a=1,求f(x)的极值;
(2)当0<a<2 时,f(x)在[1,4]上的最小值为-$\frac{16}{3}$,求f(x)在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.x为实数,[x]表示不超过x的最大整数,如[1.2]=1,[-1.2]=-2;则函数f(x)=[x[x]]在(-1,1)上(  )
A.是奇函数B.是偶函数
C.既是奇函数又是偶函数D.是增函数

查看答案和解析>>

同步练习册答案