精英家教网 > 高中数学 > 题目详情
20.定义在[-10,10]上的偶函数f(x)在(-∞,0)是单调递减,f(2a2+a+1)<f(3a2-2a+1),则a的取值范围如何?

分析 由函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递减,则有f(x)在(0,+∞)内递增.由配方可得2a2+a+1,3a2-2a+1均恒正,即有2a2+a+1<3a2-2a+1,结合3a2-2a+1≤10,解不等式即可得到a的范围.

解答 解:由函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递减,
则有f(x)在(0,+∞)内递增.
由2a2+a+1=2(a+$\frac{1}{4}$)2+$\frac{7}{8}$>0恒成立,
3a2-2a+1=3(a-$\frac{1}{3}$)2+$\frac{2}{3}$>0恒成立,
则f(2a2+a+1)<f(3a2-2a+1),即为2a2+a+1<3a2-2a+1,
即a2-3a>0,解得a>3或a<0.
又3a2-2a+1≤10,∴$\frac{1-2\sqrt{7}}{3}$≤a≤$\frac{1+2\sqrt{7}}{3}$
则a的取值范围是[$\frac{1-2\sqrt{7}}{3}$,0).

点评 本题考查函数的奇偶性和单调性的运用,考查运算能力,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.△ABC中,a、b、c成等差数列,∠B=30°,S△ABC=$\frac{1}{2}$,那么b=(  )
A.1+$\sqrt{3}$B.$\frac{3+\sqrt{3}}{2}$C.$\frac{2+\sqrt{3}}{3}$D.$\frac{3+\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知奇函数f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是定义域为R的减函数.
(Ⅰ)求a,b的值;
(Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四面体A-BCD中,F、E、H分别是棱AB、BD、AC的中点,G为DE的中点.
(Ⅰ)证明:直线EF∥平面ACD
(Ⅱ)证明:直线HG∥平面CEF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知某圆的内接正方形ABCD相对的两个顶点的坐标分别为A(5,6),C(3,4),那么这个圆的方程为(x-4)2+(y-5)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线过点(2,3),它在x轴上的截距是在y轴上的截距的2倍,则此直线的方程为3x-2y=0或x+2y-8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=a(x+1)2-4lnx,a∈R.
(1)若x=1是f(x)的极值点,求a的值;
(2)已知点P(0,1)和函数f(x)图象上动点M(m,f(m)),对任意m∈[1,e],直线PM倾斜角都是钝角,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(1,sinx),$\overrightarrow{b}$=(cos(2x+$\frac{π}{3}$),sinx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}-\frac{1}{2}$cos2x.
(1)求函数f(x)的解析式及在[0,2π]的单调增区间;
(2)当x∈[0,$\frac{π}{3}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若sinα=3sin(α-2β),则tan(α-β)+2tanβ=4tanβ.

查看答案和解析>>

同步练习册答案